OFFSET
0,1
COMMENTS
b(n)=A096748(n-1): for n>5: b(n)+b(n+4)=a(n+2) for n>5: a(n)+a(n+4)=5*b(n+2).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
FORMULA
From Colin Barker, Aug 03 2020: (Start)
G.f.: (1 + x)*(2 - x^2 + x^3 - x^4 + x^7 - x^8) / (1 - x^2 - x^4).
a(n) = a(n-2) + a(n-4) for n>10.
(End)
MAPLE
b[0]:=2:b[1]:=1:for n from 2 to 80 do b[n]:=b[n-1]+b[n-2] od: a[0]:=2:a[1]:=2:a[2]:=1:a[3]:=2:a[4]:=3:a[5]:=3: for n from 3 to 39 do a[2*n]:=b[n]:a[2*n+1]:=b[n]+b[n-3] od: seq(a[n], n=0..79);
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1}, {2, 2, 1, 2, 3, 3, 4, 6, 7, 8}, 60] (* Harvey P. Dale, Jun 22 2022 *)
PROG
(PARI) Vec((1 + x)*(2 - x^2 + x^3 - x^4 + x^7 - x^8) / (1 - x^2 - x^4) + O(x^45)) \\ Colin Barker, Aug 03 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Mar 28 2007
STATUS
approved