login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328701
Period in residues modulo n in iteration of x^2 + x + 1 starting at 0.
2
1, 1, 2, 2, 1, 2, 3, 4, 2, 1, 2, 2, 3, 3, 2, 8, 1, 2, 2, 2, 6, 2, 4, 4, 4, 3, 2, 6, 7, 2, 7, 16, 2, 1, 3, 2, 3, 2, 6, 4, 7, 6, 5, 2, 2, 4, 5, 8, 3, 4, 2, 6, 1, 2, 2, 12, 2, 7, 11, 2, 4, 7, 6, 32, 3, 2, 2, 2, 4, 3, 10, 4, 18, 3, 4, 2, 6, 6, 3, 8, 2, 7, 2, 6, 1, 5, 14, 4, 1, 2, 3
OFFSET
1,3
COMMENTS
a(n) is the period of {A002065 mod n}.
Let f(0) = 0, f(k+1) = (f(k)^2+f(k)+1) mod n, then a(n) is the smallest t such that f(i) = f(i+t) for all sufficiently large i.
Obviously a(n) <= A290731(n): f(1), f(2), ..., f(A290731(n)+1) are all of the form (s^2+s+1) mod n, so there must exists 1 <= i < j <= A290731(n)+1 such that f(i) = f(j), and a(n) <= j - i <= A290731(n). The equality seems to hold only for n = 3, 6 or n is a power of 2.
FORMULA
a(n1*n2) = lcm(a(n1),a(n2)) if gcd(n1,n2) = 1.
It seems that for e > 0, a(3^e) = 2; a(5^e) = 1 if e = 1, 4*5^(e-2) otherwise; a(7^e) = 3; a(11^e) = 2 if e = 1, 10*11^(e-2) otherwise; a(13^e) = 3 if e = 1, 12*13^(e-2) otherwise ...
Proof that a(2^e) = 2^(e-1) by induction: we will show that {f(1), f(2), ..., f(2^(e-1))} is a reduced system modulo 2^e, where f is defined in the comment section. It is easy to see that this is true for e = 1, 2.
Suppose that {f(1), f(2), ..., f(2^(e-1))} is a reduced system modulo 2^e, e = 1, 2. For each 1 <= i <= 2^(e-1), f(2^(e-1)+i) - f(i) = Sum_{j=i..2^(e-1)+i-1} (f(j+1)-f(j)) = Sum_{j=i..2^(e-1)+i-1} (f(j)^2+1) = 2^(e-1) + Sum_{j=i..2^(e-1)+i-1} f(j)^2. Of course, {f(i), f(i+1), ..., f(2^(e-1)+i-1)} is also a reduced system modulo 2^e.
Note that if x == y (mod 2^e), then x^2 == y^2 (mod 2^(e+1)). So f(2^(e-1)+i) - f(i) == 2^(e-1) + (1^2+3^2+5^2+...+(2^e-1)^2) == 2^e (mod 2^(e+1)), 1 <= i <= 2^(e-1). This shows that {f(1), f(2), ..., f(2^(e-1)), f(2^(e-1)+1), f(2^(e-1)+2), ..., f(2^e)} is a reduced system modulo 2^(e+1). QED.
EXAMPLE
In the following example, () denotes the cycles.
A002065(n) mod 4: 0, (1, 3), so a(4) = 2.
A002065(n) mod 7: 0, (1, 3, 6), so a(7) = 3.
A002065(n) mod 29: 0, (1, 3, 13, 9, 4, 21, 28), so a(29) = 7.
A002065(n) mod 61: (0, 1, 3, 13). {A002065(n) mod 61} enters into the cycle (0, 1, 3, 13) from the very beginning, so a(61) = 0.
A002065(n) mod 64: 0, (1, 3, 13, 55, 9, 27, 53, 47, 17, 51, 29, 39, 25, 11, 5, 31, 33, 35, 45, 23, 41, 59, 21, 15, 49, 19, 61, 7, 57, 43, 37, 63), so a(64) = 32.
PROG
(PARI) a(n) = my(v=[0], k); for(i=2, n+1, k=(v[#v]^2+v[#v]+1)%n; v=concat(v, k); for(j=1, i-1, if(v[j]==k, return(i-j))))
CROSSREFS
Cf. A002065, A328702 (indices to enter the cycles), A290731.
Sequence in context: A292602 A071444 A232441 * A085257 A352889 A230507
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 26 2019
STATUS
approved