login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232441
Sequence read from antidiagonals of rectangular array given by A(n,k) = 2^(2*k)*(Sum_{j=1..n-floor(n/2)-1} (cos(j*Pi/n))^(2*k)), rows n >= 3, columns k >= 0.
1
1, 1, 1, 2, 2, 1, 2, 3, 4, 1, 3, 4, 7, 8, 1, 3, 5, 10, 18, 16, 1, 4, 6, 13, 28, 47, 32, 1, 4, 7, 16, 38, 82, 123, 64, 1, 5, 8, 19, 48, 117, 244, 322, 128, 1, 5, 9, 22, 58, 152, 370, 730, 843, 256, 1, 6, 10, 25, 68
OFFSET
3,4
COMMENTS
Row indices n begin with 3, column indices k begin with 0.
FORMULA
A(2*m+1,k) = A186740(m,k), m = 1,2,....
Conjecture: A(n,k) = floor(A198632(n-1,k)/2), n >= 3, k >= 0.
EXAMPLE
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,...
2, 3, 7, 18, 47, 123, 322, 843, 2207, 5778,15127,...
2, 4, 10, 28, 82, 244, 730, 2188, 6562,19684,59050,...
MATHEMATICA
Table[Function[m, FullSimplify[2^(2 k)*Sum[Cos[j*Pi/m]^(2 k), {j, m - Floor[m/2] - 1}]]][n - k + 1], {n, 3, 12}, {k, 0, n - 2}] // Flatten (* Michael De Vlieger, Mar 18 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Nov 23 2013
STATUS
approved