|
|
A328704
|
|
Primes dividing nonzero terms in A002065.
|
|
1
|
|
|
3, 13, 61, 151, 211, 223, 739, 1009, 1531, 4363, 4513, 5503, 6277, 6397, 7753, 7873, 9463, 11353, 11587, 11677, 12007, 12241, 13669, 15061, 15391, 17509, 17791, 21157, 25243, 25747, 26959, 28351, 28411, 29641, 30553, 30727, 31873, 33289, 33469, 33997, 36343, 36721, 37117, 37201
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes in A328703.
Sequence is infinite: it contains all prime factors of the numbers A002065(p), where p is any prime. Note that gcd(A002065(p), A002065(q)) = 1 for primes p != q. So the set of prime factors of {A002065(p) : p prime} is infinite.
|
|
LINKS
|
Table of n, a(n) for n=1..44.
|
|
PROG
|
(PARI) v(n) = my(v=[0], k, flag=1); for(i=2, n+1, k=(v[#v]^2+v[#v]+1)%n; v=concat(v, k); for(j=1, i-1, if(v[j]==k, flag=0)); if(flag==0, break())); v
a(n) = isprime(n) && !(v(n)[#v(n)])
|
|
CROSSREFS
|
Cf. A002065, A328703.
Sequence in context: A232611 A238445 A355298 * A341077 A357749 A112568
Adjacent sequences: A328701 A328702 A328703 * A328705 A328706 A328707
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jianing Song, Oct 26 2019
|
|
STATUS
|
approved
|
|
|
|