login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328705 Dirichlet g.f.: Product_{k>=1} zeta(k*s)^2. 1
1, 2, 2, 5, 2, 4, 2, 10, 5, 4, 2, 10, 2, 4, 4, 20, 2, 10, 2, 10, 4, 4, 2, 20, 5, 4, 10, 10, 2, 8, 2, 36, 4, 4, 4, 25, 2, 4, 4, 20, 2, 8, 2, 10, 10, 4, 2, 40, 5, 10, 4, 10, 2, 20, 4, 20, 4, 4, 2, 20, 2, 4, 10, 65, 4, 8, 2, 10, 4, 8, 2, 50, 2, 4, 10, 10, 4, 8, 2, 40 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Dirichlet convolution of A000688 with itself.
LINKS
FORMULA
a(n) = Sum_{d|n} A000688(n/d) * A000688(d).
Sum_{k=1..n} a(k) ~ c^2 * n * (log(n) + 2*gamma - 1 - 2*s), where c = A021002 = Product_{k>=2} zeta(k) = 2.2948565916733137941835158313443112887131637994..., s = Sum_{k>=2} k*zeta'(k)/zeta(k) = -2.1955691982567064617939038695473479681910375... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 26 2019
Multiplicative with a(p^e) = A000712(e). - Amiram Eldar, Nov 30 2020
MATHEMATICA
Table[DivisorSum[n, FiniteAbelianGroupCount[n/#] FiniteAbelianGroupCount[#] &], {n, 1, 80}]
CROSSREFS
Sequence in context: A360910 A339664 A124316 * A351346 A061034 A245635
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 22:39 EDT 2023. Contains 363044 sequences. (Running on oeis4.)