login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292603
Doudna-tree reduced modulo 4: a(n) = A005940(1+n) mod 4.
3
1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1
OFFSET
0,2
FORMULA
a(n) = A010873(A005940(1+n)).
a(n) + 4*A292602(n) = A005940(1+n).
a(2n+1) = 2*a(n) mod 4.
a(A004767(n)) = 0.
a(A016813(n)) = 2.
a(2*A156552(A246261(n))) = 1.
a(2*A156552(A246263(n))) = 3.
a(n * 2^(1+A246271(A005940(1+n)))) = 1.
EXAMPLE
The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292602):
1
|
2
............../ \..............
3 0
....../ \...... ....../ \......
1 2 1 0
/ \ / \ / \ / \
/ \ / \ / \ / \
3 2 3 0 1 2 3 0
/ \ / \ / \ / \ / \ / \ / \ / \
3 2 1 0 3 2 1 0 1 2 3 0 1 2 1 0
PROG
(Scheme) (define (A292603 n) (modulo (A005940 (+ 1 n)) 4))
CROSSREFS
Cf. A004767 (gives the positions of 0's), A016813 (of 2's).
Sequence in context: A308322 A308898 A106728 * A308880 A319047 A276335
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 01 2017
STATUS
approved