login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106728
Triangle T(n, k) = ( ((f(n+1) mod 5) mod 4) + ((f(k+1) mod 5) mod 4) ) mod 4, where f(n) = 10 - (prime(n+3) mod 10).
1
2, 3, 0, 1, 2, 0, 2, 3, 1, 2, 0, 1, 3, 0, 2, 1, 2, 0, 1, 3, 0, 0, 1, 3, 0, 2, 3, 2, 3, 0, 2, 3, 1, 2, 1, 0, 2, 3, 1, 2, 0, 1, 0, 3, 2, 3, 0, 2, 3, 1, 2, 1, 0, 3, 0, 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0, 2, 3, 1, 2, 0, 1, 0, 3, 2, 3, 1, 2, 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0, 1, 0, 0, 1, 3, 0, 2, 3, 2, 1, 0, 1, 3, 0, 3, 2
OFFSET
0,1
FORMULA
T(n, k) = ( ((f(n+1) mod 5) mod 4) + ((f(k+1) mod 5) mod 4) ) mod 4, where f(n) = 10 - (prime(n+3) mod 10).
EXAMPLE
Triangle begins as:
2;
3, 0;
1, 2, 0;
2, 3, 1, 2;
0, 1, 3, 0, 2;
1, 2, 0, 1, 3, 0;
0, 1, 3, 0, 2, 3, 2;
3, 0, 2, 3, 1, 2, 1, 0;
2, 3, 1, 2, 0, 1, 0, 3, 2;
3, 0, 2, 3, 1, 2, 1, 0, 3, 0;
1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0;
MATHEMATICA
f[n_]= 10 -Mod[Prime[n+3], 10];
T[n_, k_]:= Mod[Mod[Mod[f[n+1], 5], 4] + Mod[Mod[f[k+1], 5], 4], 4];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten
PROG
(Sage)
def f(n): return 10 - (nth_prime(n+3)%10)
def A106728(n, k): return ( ((f(n+1))%5)%4 + ((f(k+1))%5)%4 )%4
flatten([[A106728(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 10 2021
CROSSREFS
Cf. A106727.
Sequence in context: A271369 A308322 A308898 * A292603 A308880 A319047
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, May 14 2005
EXTENSIONS
Edited by G. C. Greubel, Sep 10 2021
STATUS
approved