login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106731 Expansion of -2*x/(1 - 4*x + 2*x^2). 2
0, -2, -8, -28, -96, -328, -1120, -3824, -13056, -44576, -152192, -519616, -1774080, -6057088, -20680192, -70606592, -241065984, -823050752, -2810071040, -9594182656, -32756588544, -111837988864, -381838778368, -1303679135744, -4451038986240, -15196797673472 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Previous name was: First entry of the vector (M^n)v, where M is the 2 X 2 matrix [[0,-2], [1,4]] and v is the column vector [0,1].
See a Oct 01 2013 comment on A007070 where it is pointed out that this sequence, interspersed with zeros, appears, together with A007070, also interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) in the power basis of the number field Q(rho(8)) of degree 4, known from the octagon. - Wolfdieter Lang, Oct 02 2013
LINKS
FORMULA
G.f.: -2*x/(1-4*x+2*x^2).
a(n) = -2*A007070(n-1) for n>=1.
a(n) = 4*a(n-1) - 2*a(n-2); a(0)=0, a(1)=-2.
a(n) = -(1/2)*sqrt(2) * ((2+sqrt(2))^n - (2-sqrt(2))^n). - Paolo P. Lava, Oct 07 2008
From G. C. Greubel, Sep 10 2021: (Start)
a(2*n) = -2^(n+1)*Pell(2*n) = -2^(n+1)*A000129(2*n).
a(2*n+1) = -2^n*Q(2n+1) = -2^n*A002203(2*n+1). (End)
MAPLE
a[0]:=0: a[1]:=-2: for n from 2 to 27 do a[n]:=4*a[n-1]-2*a[n-2] od: seq(a[n], n=0..30);
MATHEMATICA
M= {{0, -2}, {1, 4}}; v[1]= {0, 1}; v[n_]:= v[n]= M.v[n-1]; Table[Abs[v[n][[1]]], {n, 30}]
CoefficientList[Series[-2x/(1 -4x +2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
PROG
(Magma) [n le 2 select -(1+(-1)^n) else 4*Self(n-1) - 2*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021
(Sage)
def a(n): return -2^((n+2)/2)*lucas_number1(n, 2, -1) if (n%2==0) else -2^((n-1)/2)*lucas_number2(n, 2, -1)
[a(n) for n in (0..30)] # G. C. Greubel, Sep 10 2021
CROSSREFS
Sequence in context: A279193 A280279 A060995 * A318010 A291383 A277653
KEYWORD
sign,easy,less
AUTHOR
Roger L. Bagula, May 30 2005
EXTENSIONS
Edited by N. J. A. Sloane, Apr 30 2006
Further editing and simpler name, Joerg Arndt, Oct 02 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:06 EST 2023. Contains 367696 sequences. (Running on oeis4.)