The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106731 Expansion of -2*x/(1 - 4*x + 2*x^2). 2
 0, -2, -8, -28, -96, -328, -1120, -3824, -13056, -44576, -152192, -519616, -1774080, -6057088, -20680192, -70606592, -241065984, -823050752, -2810071040, -9594182656, -32756588544, -111837988864, -381838778368, -1303679135744, -4451038986240, -15196797673472 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Previous name was: First entry of the vector (M^n)v, where M is the 2 X 2 matrix [[0,-2], [1,4]] and v is the column vector [0,1]. See a Oct 01 2013 comment on A007070 where it is pointed out that this sequence, interspersed with zeros, appears, together with A007070, also interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) in the power basis of the number field Q(rho(8)) of degree 4, known from the octagon. - Wolfdieter Lang, Oct 02 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Index entries for linear recurrences with constant coefficients, signature (4,-2). FORMULA G.f.: -2*x/(1-4*x+2*x^2). a(n) = -2*A007070(n-1) for n>=1. a(n) = 4*a(n-1) - 2*a(n-2); a(0)=0, a(1)=-2. a(n) = -(1/2)*sqrt(2) * ((2+sqrt(2))^n - (2-sqrt(2))^n). - Paolo P. Lava, Oct 07 2008 From G. C. Greubel, Sep 10 2021: (Start) a(2*n) = -2^(n+1)*Pell(2*n) = -2^(n+1)*A000129(2*n). a(2*n+1) = -2^n*Q(2n+1) = -2^n*A002203(2*n+1). (End) MAPLE a[0]:=0: a[1]:=-2: for n from 2 to 27 do a[n]:=4*a[n-1]-2*a[n-2] od: seq(a[n], n=0..30); MATHEMATICA M= {{0, -2}, {1, 4}}; v[1]= {0, 1}; v[n_]:= v[n]= M.v[n-1]; Table[Abs[v[n][[1]]], {n, 30}] CoefficientList[Series[-2x/(1 -4x +2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *) PROG (Magma) [n le 2 select -(1+(-1)^n) else 4*Self(n-1) - 2*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021 (Sage) def a(n): return -2^((n+2)/2)*lucas_number1(n, 2, -1) if (n%2==0) else -2^((n-1)/2)*lucas_number2(n, 2, -1) [a(n) for n in (0..30)] # G. C. Greubel, Sep 10 2021 CROSSREFS Cf. A000129, A002203, A007070, A060995. Sequence in context: A279193 A280279 A060995 * A318010 A291383 A277653 Adjacent sequences: A106728 A106729 A106730 * A106732 A106733 A106734 KEYWORD sign,easy,less AUTHOR Roger L. Bagula, May 30 2005 EXTENSIONS Edited by N. J. A. Sloane, Apr 30 2006 Further editing and simpler name, Joerg Arndt, Oct 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 23:06 EST 2023. Contains 367696 sequences. (Running on oeis4.)