login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060995
Number of routes of length 2n on the sides of an octagon from a point to opposite point.
5
0, 2, 8, 28, 96, 328, 1120, 3824, 13056, 44576, 152192, 519616, 1774080, 6057088, 20680192, 70606592, 241065984, 823050752, 2810071040, 9594182656, 32756588544, 111837988864, 381838778368, 1303679135744
OFFSET
1,2
COMMENTS
Also the 2nd row in the 2-shuffle Phi_2(W(sqrt(2))) of the Fraenkel-Kimberling publication. - R. J. Mathar, Aug 17 2009
First differences of A056236. - Jeremy Gardiner, Aug 11 2013
LINKS
Tomislav Doslic, I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea 11 (2016) 255-276.
International Mathematical Olympiad, 1979 Problem 6
A. S. Fraenkel, C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discr. Math. 126 (1-3) (1994) 137-149. [From R. J. Mathar, Aug 17 2009]
FORMULA
G.f.: 2*x^2/(1-4*x+2*x^2).
a(n) = (2 + sqrt(2))^(n-1)/sqrt(2) - (2-sqrt(2))^(n-1)/sqrt(2).
a(n) = 4*a(n-1)-2*a(n-2).
a(n) = 2*A007070(n-2)
G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 + 1/( 1 - 4*x^2/(4*x^2 + 2*(1-2*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
MATHEMATICA
LinearRecurrence[{4, -2}, {0, 2}, 40] (* Harvey P. Dale, Mar 03 2012 *)
PROG
(PARI) { for (n=1, 200, if (n>2, a=4*a1 - 2*a2; a2=a1; a1=a, if (n==1, a=a2=0, a=a1=2)); write("b060995.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 16 2009
(Sage) [(lucas_number2(n, 4, 2)-lucas_number2(n-1, 4, 2)) for n in range(0, 24)] # Zerinvary Lajos, Nov 10 2009
CROSSREFS
Sequence in context: A090426 A279193 A280279 * A106731 A318010 A291383
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 13 2001
STATUS
approved