login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090426
a(1) = 1, otherwise a(n) = floor(Pi^(n+1)/(Pi^2 + 1)).
6
0, 1, 2, 8, 28, 88, 277, 872, 2742, 8615, 27066, 85032, 267137, 839236, 2636539, 8282934, 26021606, 81749286, 256822957, 806833116, 2534740992, 7963123679, 25016890850, 78592880512, 246906816042, 775680639401, 2436872598274, 7655661052474, 24050968520828
OFFSET
0,3
COMMENTS
a(n+1)/a(n) converges to Pi.
FORMULA
Let b(0)=0; b(1)=1; b(n+2)=(Pi-1/Pi)*b(n+1)+b(n). a(n)=floor(b(n)).
MATHEMATICA
Join[{0, 1}, Table[Floor[Pi^(n + 1)/(Pi^2 + 1)], {n, 2, 28}]] (* Arkadiusz Wesolowski, Apr 20 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Nov 30 2003
EXTENSIONS
Edited by Don Reble, Nov 14 2005
Name changed by Arkadiusz Wesolowski, Apr 20 2012
STATUS
approved