|
|
A178222
|
|
Partial sums of floor(3^n/4).
|
|
1
|
|
|
0, 2, 8, 28, 88, 270, 816, 2456, 7376, 22138, 66424, 199284, 597864, 1793606, 5380832, 16142512, 48427552, 145282674, 435848040, 1307544140, 3922632440, 11767897342, 35303692048, 105911076168, 317733228528
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Partial sums of A081251(n-1).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
|
|
FORMULA
|
a(n) = round((3*3^n - 4*n - 4)/8).
a(n) = floor((3*3^n - 4*n - 3)/8).
a(n) = ceiling((3*3^n - 4*n - 5)/8).
a(n) = round((3*3^n - 4*n - 3)/8).
a(n) = a(n-2) + 3^(n-1) - 1, n > 2.
From Bruno Berselli, Jan 14 2011: (Start)
a(n) = (3*3^n - 4*n - 4 + (-1)^n)/8.
G.f.: 2*x^2/((1+x)*(1-3*x)*(1-x)^2). (End)
|
|
EXAMPLE
|
a(3) = 0 + 2 + 6 = 8.
|
|
MAPLE
|
seq (round ((3*3^n-4*n-3)/8), n=1..25);
|
|
MATHEMATICA
|
Accumulate[Floor[3^Range[30]/4]] (* Harvey P. Dale, Nov 04 2011 *)
CoefficientList[Series[2 x/((1 + x) (1 - 3 x) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
|
|
PROG
|
(Magma) [Floor((3*3^n-4*n-3)/8): n in [1..30]]; // Vincenzo Librandi, Jun 23 2011
|
|
CROSSREFS
|
Cf. A081251.
Sequence in context: A118047 A087431 A176758 * A090426 A279193 A280279
Adjacent sequences: A178219 A178220 A178221 * A178223 A178224 A178225
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mircea Merca, Dec 26 2010
|
|
STATUS
|
approved
|
|
|
|