login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178222
Partial sums of floor(3^n/4).
1
0, 2, 8, 28, 88, 270, 816, 2456, 7376, 22138, 66424, 199284, 597864, 1793606, 5380832, 16142512, 48427552, 145282674, 435848040, 1307544140, 3922632440, 11767897342, 35303692048, 105911076168, 317733228528
OFFSET
1,2
COMMENTS
Partial sums of A081251(n-1).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((3*3^n - 4*n - 4)/8).
a(n) = floor((3*3^n - 4*n - 3)/8).
a(n) = ceiling((3*3^n - 4*n - 5)/8).
a(n) = round((3*3^n - 4*n - 3)/8).
a(n) = a(n-2) + 3^(n-1) - 1, n > 2.
From Bruno Berselli, Jan 14 2011: (Start)
a(n) = (3*3^n - 4*n - 4 + (-1)^n)/8.
G.f.: 2*x^2/((1+x)*(1-3*x)*(1-x)^2). (End)
EXAMPLE
a(3) = 0 + 2 + 6 = 8.
MAPLE
seq (round ((3*3^n-4*n-3)/8), n=1..25);
MATHEMATICA
Accumulate[Floor[3^Range[30]/4]] (* Harvey P. Dale, Nov 04 2011 *)
CoefficientList[Series[2 x/((1 + x) (1 - 3 x) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
PROG
(Magma) [Floor((3*3^n-4*n-3)/8): n in [1..30]]; // Vincenzo Librandi, Jun 23 2011
CROSSREFS
Cf. A081251.
Sequence in context: A118047 A087431 A176758 * A090426 A279193 A280279
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 26 2010
STATUS
approved