login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178222 Partial sums of floor(3^n/4). 1
0, 2, 8, 28, 88, 270, 816, 2456, 7376, 22138, 66424, 199284, 597864, 1793606, 5380832, 16142512, 48427552, 145282674, 435848040, 1307544140, 3922632440, 11767897342, 35303692048, 105911076168, 317733228528 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A081251(n-1).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).

FORMULA

a(n) = round((3*3^n - 4*n - 4)/8).

a(n) = floor((3*3^n - 4*n - 3)/8).

a(n) = ceiling((3*3^n - 4*n - 5)/8).

a(n) = round((3*3^n - 4*n - 3)/8).

a(n) = a(n-2) + 3^(n-1) - 1, n > 2.

From Bruno Berselli, Jan 14 2011: (Start)

a(n) = (3*3^n - 4*n - 4 + (-1)^n)/8.

G.f.: 2*x^2/((1+x)*(1-3*x)*(1-x)^2). (End)

EXAMPLE

a(3) = 0 + 2 + 6 = 8.

MAPLE

seq (round ((3*3^n-4*n-3)/8), n=1..25);

MATHEMATICA

Accumulate[Floor[3^Range[30]/4]] (* Harvey P. Dale, Nov 04 2011 *)

CoefficientList[Series[2 x/((1 + x) (1 - 3 x) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)

PROG

(Magma) [Floor((3*3^n-4*n-3)/8): n in [1..30]]; // Vincenzo Librandi, Jun 23 2011

CROSSREFS

Cf. A081251.

Sequence in context: A118047 A087431 A176758 * A090426 A279193 A280279

Adjacent sequences: A178219 A178220 A178221 * A178223 A178224 A178225

KEYWORD

nonn,easy

AUTHOR

Mircea Merca, Dec 26 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 18:31 EDT 2023. Contains 361575 sequences. (Running on oeis4.)