login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178224
Numbers k such that d(1)^1 + d(2)^2 +... + d(p)^p is a square, where d(i), i=1..p, are the decimal digits of k.
1
0, 1, 4, 9, 10, 31, 40, 52, 73, 81, 90, 94, 100, 102, 142, 144, 148, 163, 211, 247, 301, 310, 345, 352, 400, 421, 422, 466, 520, 523, 526, 562, 573, 631, 643, 679, 711, 712, 730, 772, 785, 801, 802, 810, 813, 816, 832, 834, 838, 841, 865, 874, 877, 900, 903, 906, 937, 940, 982, 983, 986, 1000, 1020, 1022, 1042, 1082, 1111, 1172, 1420
OFFSET
1,3
LINKS
EXAMPLE
8762 is in the sequence because 8 + 7^2 + 6^3 + 2^4 = 289 = 17^2.
MAPLE
with(numtheory):for n from 0 to 1500 do:l:=length(n):n0:=n:s:=0:for m from
1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s:=s+u^(l-m+1):od:if type(sqrt(s), integer)=true then printf(`%d, `, n):else fi:od:
MATHEMATICA
sqQ[n_]:=Module[{idn=IntegerDigits[n]}, IntegerQ[Sqrt[Total[idn^Range[ Length[ idn]]]]]]; Select[Range[0, 1500], sqQ] (* Harvey P. Dale, Jun 22 2011 *)
PROG
(Sage) is_A178224 = lambda x: is_square(sum(d**i for i, d in enumerate(reversed(x.digits()), 1))) # D. S. McNeil, Dec 20 2010
CROSSREFS
Sequence in context: A236024 A141395 A121215 * A102985 A112401 A178360
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 20 2010
EXTENSIONS
Offset corrected by Robert Israel, Feb 19 2024
STATUS
approved