OFFSET
1,1
COMMENTS
Also the number of different 4- and 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices, if the colors of the two base vertices are fixed. - Patrick Labarque, Mar 23 2010
From Toby Gottfried, Apr 18 2010: (Start)
a(n) = the number of ternary sequences of length n+1 where the numbers of (0's, 1's) are both odd.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Klaus Brockhaus, Illustration for A081134, A081249, A081250 and A081251
Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
FORMULA
G.f.: 2/((1-x)*(1+x)*(1-3*x)).
a(n) = a(n-2) + 2*3^(n) for n > 1.
a(n+2) - a(n) = A008776(n).
a(n) = 2*A033113(n+1).
a(2*n+1) = A054880(n+1).
a(n) = floor(3^(n+1)/4). - Mircea Merca, Dec 26 2010
From G. C. Greubel, Jul 14 2019: (Start)
a(n) = (9*3^(n-1) -(-1)^n -2)/4.
E.g.f.: (3*exp(3*x) - 2*exp(x) - exp(-x))/4. (End)
EXAMPLE
MAPLE
seq(floor(3^(n+1)/4), n=1..30). # Mircea Merca, Dec 27 2010
MATHEMATICA
a[n_]:= Floor[3^(n+1)/4]; Array[a, 30]
Table[(9*3^(n-1) -(-1)^n -2)/4, {n, 1, 30}] (* G. C. Greubel, Jul 14 2019 *)
PROG
(Magma) [Floor(3^(n+1)/4) : n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
(PARI) vector(30, n, (9*3^(n-1) -(-1)^n -2)/4) \\ G. C. Greubel, Jul 14 2019
(Sage) [(9*3^(n-1) -(-1)^n -2)/4 for n in (1..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([1..30], n-> (9*3^(n-1) -(-1)^n -2)/4); # G. C. Greubel, Jul 14 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Mar 17 2003
STATUS
approved