login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000620
Number of monosubstituted alkanes C(n-1)H(2n-1)-X with n-1 carbon atoms that are stereoisomers.
(Formerly M1642 N0642)
8
0, 0, 0, 0, 2, 6, 20, 60, 176, 512, 1488, 4326, 12648, 37186, 109980, 327216, 979020, 2944414, 8897732, 27005290, 82288516, 251650788, 772127678, 2376238138, 7333188770, 22688297950, 70360977228, 218678818026, 681017928476, 2124840874610, 6641336507270, 20791999731518
OFFSET
1,5
COMMENTS
Also number of monosubstituted alkanes C(n)H(2n+1)-X of the form R-CH2-X (primary) that are stereoisomers.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = this sequence, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-François Alcover, Mathematica program
C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1106.
C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1105. (Annotated scanned copy)
FORMULA
See Maple program for recurrences for this sequence and A000621-A000625.
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.105352133282419523497... (see A239805). - Vaclav Kotesovec, Mar 27 2014
MAPLE
# Blair and Henze's recurrences for A000620-A000625 (see comments lines for relationship between the sequences and their symbols).
Ps := [0, 0, 0]; Pn := [1, 1, 1]; Ss := [0, 0, 0]; Sn := [0, 0, 1]; Ts := [0, 0, 0]; Tn := [0, 0, 0]; As := [0, 0, 0]; An := [1, 1, 2]; T := [1, 1, 2];
for n from 4 to 60 do Ps := [op(Ps), As[n-1]]; Pn := [op(Pn), An[n-1]]; t1 := add( 2*T[n-1-j]*T[j], j=1..floor((n-2)/2) ); if n mod 2 = 1 then i := (n-1)/2; t1 := t1+T[i]^2-An[i]; fi; Ss := [op(Ss), t1];
t2 := 0; if n mod 2 = 1 then i := (n-1)/2; t2 := An[i]; fi; Sn := [op(Sn), t2]; t3 := 0; for i from 1 to (n-1)/3 do for j from i+1 to (n-2)/2 do k := n-1-i-j; if j<k then t3 := t3+2*T[i]*T[j]*T[k]; fi; od: od:
t4 := 0; t5 := 0; for i from 1 to (n-2)/2 do j := n-1-2*i; if j > 0 and i <> j then t4 := t4+(T[i]^2-An[i])*T[j]+An[i]*As[j]; t5 := t5+An[i]*An[j]; fi; od; t6 := 0; t7 := 0; if n mod 3 = 1 then i := (n-1)/3; t6 := (2*T[i]+T[i]^3)/3-An[i]^2; t7 := An[i]^2; fi;
Ts := [op(Ts), t3+t4+t6]; Tn := [op(Tn), t5+t7]; As := [op(As), Ps[n]+Ss[n]+Ts[n]]; An := [op(An), Pn[n]+Sn[n]+Tn[n]]; T := [op(T), As[n]+An[n]]; od: Ps; Pn; Ss; Ts; Tn; T;
MATHEMATICA
(* See links *)
KEYWORD
nonn
EXTENSIONS
Additional comments from Bruce Corrigan, Nov 04 2002
STATUS
approved