OFFSET
1,5
COMMENTS
Also number of monosubstituted alkanes C(n)H(2n+1)-X of the form R-CH2-X (primary) that are stereoisomers.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..1930
Jean-François Alcover, Mathematica program
C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1106.
C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1105. (Annotated scanned copy)
FORMULA
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.105352133282419523497... (see A239805). - Vaclav Kotesovec, Mar 27 2014
MAPLE
# Blair and Henze's recurrences for A000620-A000625 (see comments lines for relationship between the sequences and their symbols).
Ps := [0, 0, 0]; Pn := [1, 1, 1]; Ss := [0, 0, 0]; Sn := [0, 0, 1]; Ts := [0, 0, 0]; Tn := [0, 0, 0]; As := [0, 0, 0]; An := [1, 1, 2]; T := [1, 1, 2];
for n from 4 to 60 do Ps := [op(Ps), As[n-1]]; Pn := [op(Pn), An[n-1]]; t1 := add( 2*T[n-1-j]*T[j], j=1..floor((n-2)/2) ); if n mod 2 = 1 then i := (n-1)/2; t1 := t1+T[i]^2-An[i]; fi; Ss := [op(Ss), t1];
t2 := 0; if n mod 2 = 1 then i := (n-1)/2; t2 := An[i]; fi; Sn := [op(Sn), t2]; t3 := 0; for i from 1 to (n-1)/3 do for j from i+1 to (n-2)/2 do k := n-1-i-j; if j<k then t3 := t3+2*T[i]*T[j]*T[k]; fi; od: od:
t4 := 0; t5 := 0; for i from 1 to (n-2)/2 do j := n-1-2*i; if j > 0 and i <> j then t4 := t4+(T[i]^2-An[i])*T[j]+An[i]*As[j]; t5 := t5+An[i]*An[j]; fi; od; t6 := 0; t7 := 0; if n mod 3 = 1 then i := (n-1)/3; t6 := (2*T[i]+T[i]^3)/3-An[i]^2; t7 := An[i]^2; fi;
Ts := [op(Ts), t3+t4+t6]; Tn := [op(Tn), t5+t7]; As := [op(As), Ps[n]+Ss[n]+Ts[n]]; An := [op(An), Pn[n]+Sn[n]+Tn[n]]; T := [op(T), As[n]+An[n]]; od: Ps; Pn; Ss; Ts; Tn; T;
MATHEMATICA
(* See links *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Additional comments from Bruce Corrigan, Nov 04 2002
STATUS
approved