login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000621 Number of monosubstituted alkanes C(n-1)H(2n-1)-X with n-1 carbon atoms that are not stereoisomers.
(Formerly M0697 N0258)
18
1, 1, 1, 2, 3, 5, 8, 14, 23, 39, 65, 110, 184, 310, 520, 876, 1471, 2475, 4159, 6996, 11759, 19775, 33244, 55902, 93984, 158030, 265696, 446746, 751128, 1262940, 2123444, 3570318, 6002983, 10093259, 16970431, 28533590, 47975381, 80664329, 135626284, 228037752 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Also number of monosubstituted alkanes C(n)H(2n+1)-X of the form R-CH2-X (primary) that are not stereoisomers.

Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).

Then Ps (and As) = A000620, Pn (and An, Sn) = this sequence, Ss = A000622, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 300.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..3000. [This replaces an earlier b-file computed by Vincenzo Librandi (and corrected terms 64-1000).]

C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (1932), 1098-1105.

C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric mono-substitution products of the paraffins, J. Amer. Chem. Soc., 54 (3) (1932), 1098-1105. (Annotated scanned copy)

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 283

G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443, "q" on page 441.

G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen,  Zeit. f. Kristall., 93 (1936), 415-443, "q" on page 441. (Annotated scanned copy)

G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Mathematica, vol.68, no.1, pp.145-254, (1937). (see pp.151-152).

FORMULA

G.f.: A(x) satisfies A(x) = 1/(1-x*A(x^2)), with offset 0. - Paul D. Hanna, Aug 16 2002

Given g.f. A(x), then B(x) = A(x) / x satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (1 - u)^2 * w - u^2 * v * (v - 1). - Michael Somos, Sep 03 2007

G.f.: x / (1 - x / (1 - x^2 / (1 - x^4 / (1 - ...)))). - Michael Somos, Sep 03 2007

From Joerg Arndt, Oct 15 2011: (Start)

For offset 0 (as considered in the 1937 Polya reference) we have

G.f.: A(x) = 1 / (1 - x / (1 - x^2 / (1 - x^4 / (1 - ...)))) and

A(x) satisfies A(x) = 1 + x*A(x)*A(x^2)) (equivalent to Hanna's functional equation).

(End)

a(n) ~ c * beta^n, where beta = 1.681367524441880255591... (see A239804), c = 0.214536139134648555630... (see A239806). Asymptotic formula a(n) ~ K * beta^n from reference (Analytic Combinatorics, p. 283), where K = 0.3607140971, beta = 1.6813675244^n is for offset 0 (beta is same, but K = c * beta = 0.360714097160142828...). - Vaclav Kotesovec, Mar 27 2014

a(n) = T(2*n-1,1), where T(n,m) = Sum_{i=1..n-m} binomial(i+m-1,i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i), n > m, T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015

a(n) = A253190(2*n-1,1). - R. J. Mathar, Dec 16 2015

EXAMPLE

G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 14*x^8 + 23*x^9 + ...

MATHEMATICA

nmax=40; a=1-x; Do[a=1/(1-x (a/.x->x^2)), {Log[2, nmax]+2}]; CoefficientList[Series[a, {x, 0, nmax-1}], x] (* Jean-François Alcover, Jun 16 2011, after Michael Somos, fixed by Vaclav Kotesovec, Mar 28 2014 *)

max = 40; cf = Fold[Function[1 - x^#2/#1], 1, 2^Reverse[Range[0, Floor[Log[2, max]]]]]; List @@ (1-Series[cf, {x, 0, 2*max}] // Normal) /. x -> 1 (* Jean-François Alcover, Sep 24 2014 *)

PROG

(PARI) {a(n) = my(A, m); if( n<1, 0, n--; m = 1; A = 1 + O(x); while( m<=n, m *= 2; A = 1 / (1 - x * subst(A, x, x^2)) ); polcoeff( A, n )) }; /* Michael Somos, Sep 03 2007 */

(Maxima)

T(n, m):=if m=n then 1 else sum(binomial(i+m-1, i)*((1+(-1)^(n-m))/2)*T((n-m)/2, i), i, 1, n-m);

makelist(T(2*n-1, 1), n, 1, 30); /* Vladimir Kruchinin, Mar 18 2015 */

CROSSREFS

Cf. A000620-A000625, A239804, A239806.

Sequence in context: A018068 A120400 A217283 * A191317 A218020 A318520

Adjacent sequences:  A000618 A000619 A000620 * A000622 A000623 A000624

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Bruce Corrigan, Nov 04 2002

Formulae edited by N. J. A. Sloane, Feb 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 08:23 EST 2021. Contains 341732 sequences. (Running on oeis4.)