login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361732
a(n) = [x^n] (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2.
1
1, 1, 2, 6, 20, 60, 174, 490, 1352, 3672, 9850, 26158, 68892, 180180, 468454, 1211730, 3120400, 8004144, 20460402, 52139990, 132502180, 335882988, 849507230, 2144114234, 5401408344, 13583493000, 34105191146, 85504030974, 214070361260, 535269125508, 1336814464470
OFFSET
0,3
FORMULA
a(n) = (n*(n - 1)*a(n-2) + 2*n*(n - 2)*a(n-1)) / ((n - 2)*(n - 1)) for n >= 4.
a(n) = Sum_{k=0..n-1} F(n-1, 2) for n >= 2, where F(n, x) is the n-th Fibonacci polynomial.
a(n) = n*A000129(n-1), a(0)=1, a(1)=1. - Vladimir Kruchinin, Apr 19 2024
a(n) = 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1)) for n >= 2. - Peter Luschny, Apr 19 2024
MAPLE
a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi;
(n*(n - 1)*a(n - 2) + 2*n*(n - 2)*a(n - 1)) / ((n - 2)*(n - 1)) end:
seq(a(n), n = 0..30);
# Alternative:
F := n -> add(combinat:-fibonacci(n - 1, 2), k = 0..n-1):
a := n -> F(n) + ifelse(n < 2, 1, 0): seq(a(n), n=0..30);
# Using the generating function:
ogf := (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2:
ser := series(ogf, x, 40): seq(coeff(ser, x, n), n = 0..30);
# Or:
a := n -> ifelse(n < 2, 1, 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1));
seq(simplify(a(n)), n = 0..30); # Peter Luschny, Apr 19 2024
CROSSREFS
Sequence in context: A231538 A082045 A358301 * A005628 A000620 A081251
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 23 2023
STATUS
approved