login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361758
a(n) = [x^n] (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/((1 - x)*(x^2 + 2*x - 1)^2).
2
1, 2, 4, 10, 30, 90, 264, 754, 2106, 5778, 15628, 41786, 110678, 290858, 759312, 1971042, 5091442, 13095586, 33555988, 85695978, 218198158, 554081146, 1403588376, 3547702610, 8949110954, 22532603954, 56637795100, 142141826074, 356212187334, 891481312842
OFFSET
0,2
FORMULA
a(n) = ((3*n^2 - 7*n + 2)*a(n - 1) - (n^2 - n)*a(n - 3) - (n^2 - 3*n)*a(n - 2)) / ((n - 1)*(n - 2)) for n >= 4.
MAPLE
a := proc(n) option remember; if n < 4 then return [1, 2, 4, 10][n + 1] fi;
((3*n^2 - 7*n + 2)*a(n - 1) - (n^2 - n)*a(n - 3) - (n^2 - 3*n)*a(n - 2))/((n - 1)*(n - 2)) end: seq(a(n), n = 0..29);
# Alternative:
ogf := (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/((1 - x)*(x^2 + 2*x - 1)^2):
ser := series(ogf, x, 40): seq(coeff(ser, x, n), n = 0..29);
CROSSREFS
Cf. A361745.
Sequence in context: A102667 A337675 A148115 * A148116 A149833 A026119
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 23 2023
STATUS
approved