login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2.
1

%I #13 Apr 19 2024 15:34:30

%S 1,1,2,6,20,60,174,490,1352,3672,9850,26158,68892,180180,468454,

%T 1211730,3120400,8004144,20460402,52139990,132502180,335882988,

%U 849507230,2144114234,5401408344,13583493000,34105191146,85504030974,214070361260,535269125508,1336814464470

%N a(n) = [x^n] (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2.

%F a(n) = (n*(n - 1)*a(n-2) + 2*n*(n - 2)*a(n-1)) / ((n - 2)*(n - 1)) for n >= 4.

%F a(n) = Sum_{k=0..n-1} F(n-1, 2) for n >= 2, where F(n, x) is the n-th Fibonacci polynomial.

%F a(n) = n*A000129(n-1), a(0)=1, a(1)=1. - _Vladimir Kruchinin_, Apr 19 2024

%F a(n) = 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1)) for n >= 2. - _Peter Luschny_, Apr 19 2024

%p a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi;

%p (n*(n - 1)*a(n - 2) + 2*n*(n - 2)*a(n - 1)) / ((n - 2)*(n - 1)) end:

%p seq(a(n), n = 0..30);

%p # Alternative:

%p F := n -> add(combinat:-fibonacci(n - 1, 2), k = 0..n-1):

%p a := n -> F(n) + ifelse(n < 2, 1, 0): seq(a(n), n=0..30);

%p # Using the generating function:

%p ogf := (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2:

%p ser := series(ogf, x, 40): seq(coeff(ser, x, n), n = 0..30);

%p # Or:

%p a := n -> ifelse(n < 2, 1, 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1));

%p seq(simplify(a(n)), n = 0..30); # _Peter Luschny_, Apr 19 2024

%Y Cf. A000129, A361758.

%K nonn

%O 0,3

%A _Peter Luschny_, Mar 23 2023