login
A000618
Number of nondegenerate Boolean functions of n variables: For n > 0, a(n) = A000616(n) - A000616(n-1).
(Formerly M0160 N0063)
4
2, 1, 3, 16, 380, 1227756, 400507805615570, 527471432057653003616766223882064, 11218076601767519586965281984173341005397671421797828020453197626398048
OFFSET
0,1
REFERENCES
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
J. Sklansky, General synthesis of tributary switching networks, IEEE Trans. Elect. Computers, 12 (1963), 464-469.
FORMULA
For n > 0, a(n) = A000616(n) - A000616(n-1). - Charles R Greathouse IV, Oct 03 2008
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
Edited and extended by Charles R Greathouse IV, Oct 03 2008
STATUS
approved