login
Number of nondegenerate Boolean functions of n variables: For n > 0, a(n) = A000616(n) - A000616(n-1).
(Formerly M0160 N0063)
4

%I M0160 N0063 #38 Oct 05 2019 19:50:03

%S 2,1,3,16,380,1227756,400507805615570,

%T 527471432057653003616766223882064,

%U 11218076601767519586965281984173341005397671421797828020453197626398048

%N Number of nondegenerate Boolean functions of n variables: For n > 0, a(n) = A000616(n) - A000616(n-1).

%D S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 12.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Goto, Eiichi, and Hidetosi Takahasi, <a href="/A000371/a000371_1.pdf">Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions</a>, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]

%H S. Muroga, <a href="/A000371/a000371.pdf">Threshold Logic and Its Applications</a>, Wiley, NY, 1971 [Annotated scans of a few pages]

%H S. Muroga, T. Tsuboi and C. R. Baugh, <a href="/A002077/a002077.pdf">Enumeration of threshold functions of eight variables</a>, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]

%H J. Sklansky, <a href="https://doi.org/10.1109/PGEC.1963.263627">General synthesis of tributary switching networks</a>, IEEE Trans. Elect. Computers, 12 (1963), 464-469.

%H <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a>

%F For n > 0, a(n) = A000616(n) - A000616(n-1). - _Charles R Greathouse IV_, Oct 03 2008

%Y Cf. A000371, A000616, A211705, A211706.

%K nonn,nice

%O 0,1

%A _N. J. A. Sloane_

%E Edited and extended by _Charles R Greathouse IV_, Oct 03 2008