The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033113 Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 16
 1, 3, 10, 30, 91, 273, 820, 2460, 7381, 22143, 66430, 199290, 597871, 1793613, 5380840, 16142520, 48427561, 145282683, 435848050, 1307544150, 3922632451, 11767897353, 35303692060, 105911076180, 317733228541, 953199685623 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Written in base 3, this yields A056830. - M. F. Hasler, Oct 05 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 906 R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 6. Index entries for linear recurrences with constant coefficients, signature (3,1,-3). FORMULA a(n) = A039300(n)-1. a(n)+a(n+1) = A003462(n+1). a(n) = 3*a(n-1) + a(n-2) -3*a(n-3). - R. J. Mathar, Jun 28 2010 From Paul Barry, Nov 12 2003: (Start) G.f.: x/((1-x)*(1+x)*(1-3*x)). a(n) = 2*a(n-1) + 3*a(n-2) + 1. Partial sums of A015518. (End) E.g.f.: (1/2)*exp(x)*(sinh(x))^2. - Paul Barry, Mar 12 2003 a(n) = Sum_{k=0..floor(n/2)} C(n+2, 2k+2)*4^k. - Paul Barry, Aug 24 2003 a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*3^j. - Paul Barry, Nov 12 2003 Convolution of A000244 and A059841 (3^n and periodic{1, 0}). a(n) = Sum_{k=0..n} (1 + (-1)^(n-k))*3^k/2. - Paul Barry, Jul 19 2004 a(n) = (1/8)*(3^(n+1) - (-1)^n - 2), with n >= 1. - Paolo P. Lava, Jan 19 2009, simplified by M. F. Hasler, Oct 06 2018 a(n) = round(3^(n+1)/8) = floor((3^(n+1)-1)/8) = ceiling((3^(n+1)-3)/8) = round((3^(n+1)-3)/8). a(n) = a(n-2) + 3^(n-1), n > 2. - Mircea Merca, Dec 27 2010 a(n) = floor((3^(n+1))/4) / 2 = A081251(n)/2, n >= 1. - Wolfdieter Lang, Apr 13 2012 MAPLE a[0]:=0: a[1]:=1: for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008 g:=x*(1/(1-3*x)/(1-x))/(1+x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=1..30); # Zerinvary Lajos, Jan 11 2009 A033113 := proc(n) (9*3^(n-1)-(-1)^n-2)/8 ; end proc: # R. J. Mathar, Jan 08 2011 MATHEMATICA Join[{a=1, b=3}, Table[c=2*b+3*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *) Module[{nn=30, d}, d=PadRight[{}, nn, {1, 0}]; Table[FromDigits[Take[d, n], 3], {n, nn}]] (* or *) LinearRecurrence[{3, 1, -3}, {1, 3, 10}, 30] (* Harvey P. Dale, May 24 2014 *) PROG (PARI) a(n)=3^n*3\8 \\ Simplified by M. F. Hasler, Oct 06 2018 (PARI) A033113(n)=3^(n+1)>>3 \\ M. F. Hasler, Oct 05 2018 (MAGMA) [Round(3^(n+1)/8): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011 CROSSREFS Cf. A003462, A039300. Sequence in context: A014531 A062107 A269800 * A290718 A300421 A302289 Adjacent sequences:  A033110 A033111 A033112 * A033114 A033115 A033116 KEYWORD nonn,base,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 21:31 EDT 2021. Contains 343070 sequences. (Running on oeis4.)