login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033116 Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 6
1, 6, 37, 222, 1333, 7998, 47989, 287934, 1727605, 10365630, 62193781, 373162686, 2238976117, 13433856702, 80603140213, 483618841278, 2901713047669, 17410278286014, 104461669716085, 626770018296510, 3760620109779061 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A015540. - Mircea Merca, Dec 28 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (6,1,-6).

FORMULA

From R. J. Mathar, Jan 08 2011: (Start)

G.f.: x / ( (1-x)*(1-6*x)*(1+x) ).

a(n) = 6^(n+1)/35 -1/10 -(-1)^n/14. (End)

a(n)=floor(6^(n+1)/35). a(n+1)=sum{k=0..floor(n/2)} 6^(n-2*k). a(n+1)=sum{k=0..n} sum{j=0..k} (-1)^(j+k)*6^j. - Paul Barry, Nov 12 2003, index corrected R. J. Mathar, Jan 08 2011

a(n) = 5*a(n-1) +6*a(n-2)+1. - Zerinvary Lajos, Dec 14 2008

a(n) = floor(6^(n+1)/7)/5 = floor((6*6^n-1)/35) = round((12*6^n-7)/70) = round((6*6^n-6)/35) = ceiling((6*6^n-6)/35). a(n)=a(n-2)+6^(n-1), n>2. - Mircea Merca, Dec 28 2010

MAPLE

a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008

A033116 := proc(n) 6^(n+1)/35 -1/10 -(-1)^n/14 ; end proc: # R. J. Mathar, Jan 08 2011

MATHEMATICA

Join[{a=1, b=6}, Table[c=5*b+6*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)

PROG

(MAGMA) [Round((12*6^n-7)/70): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011

CROSSREFS

Cf. A015540

Sequence in context: A001419 A081152 A244618 * A033124 A288786 A180032

Adjacent sequences:  A033113 A033114 A033115 * A033117 A033118 A033119

KEYWORD

nonn,easy,base

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 09:56 EST 2021. Contains 341746 sequences. (Running on oeis4.)