login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033116
Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
6
1, 6, 37, 222, 1333, 7998, 47989, 287934, 1727605, 10365630, 62193781, 373162686, 2238976117, 13433856702, 80603140213, 483618841278, 2901713047669, 17410278286014, 104461669716085, 626770018296510, 3760620109779061
OFFSET
1,2
COMMENTS
Partial sums of A015540. - Mircea Merca, Dec 28 2010
FORMULA
From R. J. Mathar, Jan 08 2011: (Start)
G.f.: x / ( (1-x)*(1-6*x)*(1+x) ).
a(n) = 6^(n+1)/35 -1/10 -(-1)^n/14. (End)
a(n)=floor(6^(n+1)/35). a(n+1)=sum{k=0..floor(n/2)} 6^(n-2*k). a(n+1)=sum{k=0..n} sum{j=0..k} (-1)^(j+k)*6^j. - Paul Barry, Nov 12 2003, index corrected R. J. Mathar, Jan 08 2011
a(n) = 5*a(n-1) +6*a(n-2)+1. - Zerinvary Lajos, Dec 14 2008
a(n) = floor(6^(n+1)/7)/5 = floor((6*6^n-1)/35) = round((12*6^n-7)/70) = round((6*6^n-6)/35) = ceiling((6*6^n-6)/35). a(n)=a(n-2)+6^(n-1), n>2. - Mircea Merca, Dec 28 2010
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
A033116 := proc(n) 6^(n+1)/35 -1/10 -(-1)^n/14 ; end proc: # R. J. Mathar, Jan 08 2011
MATHEMATICA
Join[{a=1, b=6}, Table[c=5*b+6*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
PROG
(Magma) [Round((12*6^n-7)/70): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
Sequence in context: A001419 A081152 A244618 * A033124 A288786 A180032
KEYWORD
nonn,easy,base
STATUS
approved