The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033118 Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 6
 1, 8, 65, 520, 4161, 33288, 266305, 2130440, 17043521, 136348168, 1090785345, 8726282760, 69810262081, 558482096648, 4467856773185, 35742854185480, 285942833483841, 2287542667870728, 18300341342965825, 146402730743726600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A015565. - Mircea Merca, Dec 28 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (8,1,-8). FORMULA a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3). a(n) = 2^(3*n+3)/63 - 1/14 - (-1)^n/18. - R. J. Mathar, Jan 08 2011 From Paul Barry, Apr 04 2008: (Start) G.f. x/((1-x^2)*(1-8*x)); a(n) = (1/3)*Sum_{k=0..n} A001045(3k). (End) a(n) = floor(8^(n+1)/9)/7 = floor((8*8^n-1)/63) = round((8*8^n-8)/63) = round((16*8^n-9)/63) = ceiling((8*8^n-8)/63). a(n) = a(n-2) + 8^(n-1), n > 2. - Mircea Merca, Dec 28 2010 MAPLE seq(1/7*floor(8^(n+1)/9), n=1..22); # Mircea Merca, Dec 27 2010 MATHEMATICA Table[FromDigits[PadRight[{}, n, {1, 0}], 8], {n, 20}] (* or *) LinearRecurrence[ {8, 1, -8}, {1, 8, 65}, 20] (* Harvey P. Dale, Jan 20 2021 *) PROG (MAGMA) [Round((8*8^n-8)/63): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011 CROSSREFS Pairwise sums are (8^n - 1)/7 (A023001). Sequence in context: A316872 A317600 A288788 * A033126 A022039 A041025 Adjacent sequences:  A033115 A033116 A033117 * A033119 A033120 A033121 KEYWORD nonn,base,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 17:01 EDT 2021. Contains 342950 sequences. (Running on oeis4.)