login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033116 Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 6

%I

%S 1,6,37,222,1333,7998,47989,287934,1727605,10365630,62193781,

%T 373162686,2238976117,13433856702,80603140213,483618841278,

%U 2901713047669,17410278286014,104461669716085,626770018296510,3760620109779061

%N Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

%C Partial sums of A015540. - _Mircea Merca_, Dec 28 2010

%H Vincenzo Librandi, <a href="/A033116/b033116.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (6,1,-6).

%F From _R. J. Mathar_, Jan 08 2011: (Start)

%F G.f.: x / ( (1-x)*(1-6*x)*(1+x) ).

%F a(n) = 6^(n+1)/35 -1/10 -(-1)^n/14. (End)

%F a(n)=floor(6^(n+1)/35). a(n+1)=sum{k=0..floor(n/2)} 6^(n-2*k). a(n+1)=sum{k=0..n} sum{j=0..k} (-1)^(j+k)*6^j. - _Paul Barry_, Nov 12 2003, index corrected _R. J. Mathar_, Jan 08 2011

%F a(n) = 5*a(n-1) +6*a(n-2)+1. - _Zerinvary Lajos_, Dec 14 2008

%F a(n) = floor(6^(n+1)/7)/5 = floor((6*6^n-1)/35) = round((12*6^n-7)/70) = round((6*6^n-6)/35) = ceiling((6*6^n-6)/35). a(n)=a(n-2)+6^(n-1), n>2. - _Mircea Merca_, Dec 28 2010

%p a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+1 od: seq(a[n], n=1..33);# _Zerinvary Lajos_, Dec 14 2008

%p A033116 := proc(n) 6^(n+1)/35 -1/10 -(-1)^n/14 ; end proc: # _R. J. Mathar_, Jan 08 2011

%t Join[{a=1,b=6},Table[c=5*b+6*a+1;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 06 2011 *)

%o (MAGMA) [Round((12*6^n-7)/70): n in [1..30]]; // _Vincenzo Librandi_, Jun 25 2011

%Y Cf. A015540

%K nonn,easy,base

%O 1,2

%A _Clark Kimberling_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 03:14 EDT 2021. Contains 342912 sequences. (Running on oeis4.)