The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033124 Base-6 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,1. 1
 1, 6, 37, 223, 1338, 8029, 48175, 289050, 1734301, 10405807, 62434842, 374609053, 2247654319, 13485925914, 80915555485, 485493332911, 2912959997466, 17477759984797, 104866559908783, 629199359452698, 3775196156716189, 22651176940297135, 135907061641782810 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Index entries for linear recurrences with constant coefficients, signature (6,0,1,-6). FORMULA a(n) = 6*a(n-1) + a(n-3) - 6*a(n-4). a(n) = round( (37/215)*6^n ). - Tani Akinari, Jul 15 2014 G.f.: x*(x^2+1) / ((x-1)*(6*x-1)*(x^2+x+1)). - Colin Barker, Jul 15 2014 EXAMPLE The first six terms have base 6 representations 1, 10, 101, 1011, 10110, 101101. - Michel Marcus, Jul 17 2014 MAPLE A033124 := proc(n)     coeftayl( (x*(x^2+1) / ((x-1)*(6*x-1)*(x^2+x+1)), x=0, n)); end proc: seq(A033124(n), n=1..30); # Wesley Ivan Hurt, Jul 17 2014 MATHEMATICA CoefficientList[Series[(x^2 + 1)/((x - 1)*(6*x - 1)*(x^2 + x + 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 17 2014 *) PROG (PARI) Vec(x*(x^2+1)/((x-1)*(6*x-1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 15 2014 (MAGMA) [Round((37/215)*6^n) : n in [1..30]]; // Wesley Ivan Hurt, Jul 17 2014 CROSSREFS Cf. A033128 (similar in base 10). Sequence in context: A081152 A244618 A033116 * A288786 A180032 A022035 Adjacent sequences:  A033121 A033122 A033123 * A033125 A033126 A033127 KEYWORD nonn,base,easy AUTHOR EXTENSIONS More terms from Colin Barker, Jul 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 09:12 EDT 2021. Contains 342935 sequences. (Running on oeis4.)