login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244618 G.f.: Sum_{n>=0} (5 + x^n)^n * x^n / (1-x)^(n+1). 5
1, 6, 37, 218, 1309, 7810, 46797, 280345, 1681029, 10081939, 60479790, 362838047, 2176908951, 13061074143, 78365313414, 470188412205, 2821120141002, 16926689765961, 101560046400158, 609360004351714, 3656159217328421, 21936952918704867, 131621710507870811, 789730242509398308 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

What is limit ( a(n) - 6^n )^(1/n) ?  (Value is near 2.7959 at n=3000.)

In general, for g.f.: Sum_{n>=0} (k + x^n)^n * x^n / (1-x)^(n+1), we have a(n)-(k+1)^n ~ n/(4*k+1) * ((1+sqrt(4*k+1))/2)^n, and limit is equal to (1+sqrt(4*k+1))/2. - Vaclav Kotesovec, Jul 02 2014

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..500

FORMULA

G.f.: Sum_{n>=0} x^(n*(n+1)) / (1-x - 5*x^(n+1))^(n+1).

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (5 + x^k)^k.

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (1 + 5*x^k)^(n-k) * x^(k^2).

a(n)-6^n ~ n/21 * ((1+sqrt(21))/2)^n. - Vaclav Kotesovec, Jul 02 2014

EXAMPLE

G.f.: A(x) = 1 + 6*x + 37*x^2 + 218*x^3 + 1309*x^4 + 7810*x^5 +...

where we have the series identity:

A(x) = 1/(1-x) + (5+x)*x/(1-x)^2 + (5+x^2)^2*x^2/(1-x)^3 + (5+x^3)^3*x^3/(1-x)^4 + (5+x^4)^4*x^4/(1-x)^5 +...+ (5 + x^n)^n * x^n / (1-x)^(n+1) +...

A(x) = 1/(1-6*x) + x^2/(1-x-5*x^2)^2 + x^6/(1-x-5*x^3)^3 + x^12/(1-x-5*x^4)^4 + x^20/(1-x-5*x^5)^5 + x^30/(1-x-5*x^6)^6 +...+ x^(n*(n+1)) / (1-x - 5*x^(n+1))^(n+1) +...

as well as the binomial identity:

A(x) = 1 + x*(1 + (5+x)) + x^2*(1 + 2*(5+x) + (5+x^2)^2) + x^3*(1 + 3*(5+x) + 3*(5+x^2)^2 + (5+x^3)^3) + x^4*(1 + 4*(5+x) + 6*(5+x^2)^2 + 4*(5+x^3)^3 + (5+x^4)^4) + x^5*(1 + 5*(5+x) + 10*(5+x^2)^2 + 10*(5+x^3)^3 + 5*(5+x^4)^4 + (5+x^5)^5) +...+ x^n * Sum_{k=0..n} binomial(n,k) * (5+x^k)^k +...

A(x) = 1 + x*(6 + x) + x^2*(6^2 + 2*(1+5*x)*x + x^4) + x^3*(6^3 + 3*(1+5*x)^2*x + 3*(1+5*x^2)*x^4 + x^9) + x^4*(6^4 + 4*(1+5*x)^3*x + 6*(1+5*x^2)^2*x^4 + 4*(1+5*x^3)*x^9 + x^16) + x^5*(6^5 + 5*(1+5*x)^4*x + 10*(1+5*x^2)^3*x^4 + 10*(1+5*x^3)^2*x^9 + 5*(1+5*x^4)*x^16 + x^25) +...+ x^n * Sum_{k=0..n} binomial(n,k) * (1+5*x^k)^(n-k) * x^(k^2) +...

MATHEMATICA

Table[SeriesCoefficient[Sum[x^(j*(j+1))/(1-x-5*x^(j+1))^(j+1), {j, 0, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 02 2014 *)

PROG

(PARI) {a(n)=local(A); A=sum(m=0, n, (5 + x^m)^m * x^m / (1-x +x*O(x^n) )^(m+1) ); polcoeff(A, n)}

for(n=0, 40, print1(a(n), ", "))

(PARI) {a(n)=local(A); A=sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1-x - 5*x^(m+1) +x*O(x^n) )^(m+1) ); polcoeff(A, n)}

for(n=0, 40, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(5+x^k)^k) +x*O(x^n)), n)}

for(n=0, 40, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(1+5*x^k)^(m-k)*x^(k^2)) +x*O(x^n)), n)}

for(n=0, 40, print1(a(n), ", "))

CROSSREFS

Cf. A243988, A244615, A244616, A244617, A243919.

Sequence in context: A057418 A001419 A081152 * A033116 A033124 A288786

Adjacent sequences:  A244615 A244616 A244617 * A244619 A244620 A244621

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 11:33 EST 2021. Contains 341750 sequences. (Running on oeis4.)