login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244616
G.f.: Sum_{n>=0} (3 + x^n)^n * x^n / (1-x)^(n+1).
5
1, 4, 17, 66, 265, 1046, 4165, 16561, 66017, 263377, 1051774, 4202363, 16797551, 67159565, 268561326, 1074052233, 4295730126, 17181735211, 68724026662, 274888965526, 1099538433297, 4398111321331, 17592342396443, 70369120593536, 281475881240563, 1125902076700152, 4503604824386737
OFFSET
0,2
COMMENTS
What is limit ( a(n) - 4^n )^(1/n) ? (Value is near 2.3069 at n=3000.)
Limit is equal to (1+sqrt(13))/2. - Vaclav Kotesovec, Jul 02 2014
LINKS
FORMULA
G.f.: Sum_{n>=0} x^(n*(n+1)) / (1-x - 3*x^(n+1))^(n+1).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (3 + x^k)^k.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (1 + 3*x^k)^(n-k) * x^(k^2).
a(n)-4^n ~ n/13 * ((1+sqrt(13))/2)^n. - Vaclav Kotesovec, Jul 02 2014
EXAMPLE
G.f.: A(x) = 1 + 4*x + 17*x^2 + 66*x^3 + 265*x^4 + 1046*x^5 + 4165*x^6 +...
where we have the series identity:
A(x) = 1/(1-x) + (3+x)*x/(1-x)^2 + (3+x^2)^2*x^2/(1-x)^3 + (3+x^3)^3*x^3/(1-x)^4 + (3+x^4)^4*x^4/(1-x)^5 +...+ (3 + x^n)^n * x^n / (1-x)^(n+1) +...
A(x) = 1/(1-4*x) + x^2/(1-x-3*x^2)^2 + x^6/(1-x-3*x^3)^3 + x^12/(1-x-3*x^4)^4 + x^20/(1-x-3*x^5)^5 + x^30/(1-x-3*x^6)^6 +...+ x^(n*(n+1)) / (1-x - 3*x^(n+1))^(n+1) +...
as well as the binomial identity:
A(x) = 1 + x*(1 + (3+x)) + x^2*(1 + 2*(3+x) + (3+x^2)^2) + x^3*(1 + 3*(3+x) + 3*(3+x^2)^2 + (3+x^3)^3) + x^4*(1 + 4*(3+x) + 6*(3+x^2)^2 + 4*(3+x^3)^3 + (3+x^4)^4) + x^5*(1 + 5*(3+x) + 10*(3+x^2)^2 + 10*(3+x^3)^3 + 5*(3+x^4)^4 + (3+x^5)^5) +...+ x^n * Sum_{k=0..n} binomial(n,k) * (3+x^k)^k +...
A(x) = 1 + x*(4 + x) + x^2*(4^2 + 2*(1+3*x)*x + x^4) + x^3*(4^3 + 3*(1+3*x)^2*x + 3*(1+3*x^2)*x^4 + x^9) + x^4*(4^4 + 4*(1+3*x)^3*x + 6*(1+3*x^2)^2*x^4 + 4*(1+3*x^3)*x^9 + x^16) + x^5*(4^5 + 5*(1+3*x)^4*x + 10*(1+3*x^2)^3*x^4 + 10*(1+3*x^3)^2*x^9 + 5*(1+3*x^4)*x^16 + x^25) +...+ x^n * Sum_{k=0..n} binomial(n,k) * (1+3*x^k)^(n-k) * x^(k^2) +...
MATHEMATICA
Table[SeriesCoefficient[Sum[x^(j*(j+1))/(1-x-3*x^(j+1))^(j+1), {j, 0, n}], {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 02 2014 *)
PROG
(PARI) {a(n)=local(A); A=sum(m=0, n, (3 + x^m)^m * x^m / (1-x +x*O(x^n) )^(m+1) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(A); A=sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1-x - 3*x^(m+1) +x*O(x^n) )^(m+1) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(3+x^k)^k) +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(1+3*x^k)^(m-k)*x^(k^2)) +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 02 2014
STATUS
approved