The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244613 Least number k > 0 such that 2^k ends in exactly n consecutive increasing digits. 1
 1, 8, 28, 328, 1328, 11328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For n = {1, 2, 3, 4, 5, 6}, the n consecutive increasing digits, given by 2^a(n)%10^n, are {2, 56, 456, 3456, 23456, 123456}, respectively. There are 12500 possible 6-digit endings for 2^k. There are no k-values such that 2^k ends in '234567', '345678', or '456789'. The k-values for which 2^k ends in '123456' are given by 11328 mod 12500. For k = 11328 + 12500*x, the digit immediately before the run of '123456' is {1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...}, respectively. Thus, we see the digit before will never be 0. So, this sequence is full. LINKS EXAMPLE 2^8 = 256 ends in '56'. Thus a(2) = 8. 2^28 ends in '456'. Thus a(3) = 28. PROG (PARI) a(n)=for(k=1, 10^6, st=2^k; c=0; if(#Str(st)>n, for(i=1, n, if(((st-(st%10^(i-1)))/10^(i-1))%10==((st-(st%10^i))/10^i)%10+1, c++)); if(c==n, return(k)))) n=0; while(n<10, print1(a(n), ", "); n++) (Python) def a(n): ..for k in range(1, 10**5): ....st = str(2**k) ....if len(st) > n: ......count = 0 ......for i in range(len(st)): ........if int(st[len(st)-1-i]) == int(st[len(st)-2-i])+1: ..........count += 1 ........else: ..........break ......if count == n: ........return k n = 0 while n < 10: ..print(a(n), end=', ') ..n += 1 CROSSREFS Sequence in context: A316512 A200034 A230702 * A228281 A146977 A068623 Adjacent sequences: A244610 A244611 A244612 * A244614 A244615 A244616 KEYWORD nonn,base,fini,full AUTHOR Derek Orr, Jul 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 27 12:09 EDT 2023. Contains 361570 sequences. (Running on oeis4.)