login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244612
a(n) = 1 if n is a square, -1 if n is six times a square, 0 if n < 1.
4
1, 0, 0, 1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (phi(q) - phi(q^6)) / 2 in powers of q where phi() is a Ramanujan theta function.
G.f.: (theta_3(q) - theta_3(q^6)) / 2 = Sum_{k>0} x^(k^2) - x^(6*k^2).
a(3*n) = A089801(n). a(3*n + 2) = 0.
Sum_{k=1..n} a(k) ~ c*sqrt(n), where c = 1 - 1/sqrt(6) = 0.5917517... . - Amiram Eldar, Oct 24 2023
EXAMPLE
G.f. = q + q^4 - q^6 + q^9 + q^16 - q^24 + q^25 + q^36 + q^49 - q^54 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^6]) / 2, {q, 0, n}];
a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors @ n]] - Boole[ OddQ [ Length @ Divisors [6 n]]]];
PROG
(PARI) {a(n) = issquare(n) - issquare(6*n)};
(Magma) Basis( ModularForms( Gamma1(24), 1/2), 64) [2];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 01 2014
EXTENSIONS
More terms from Antti Karttunen, Dec 15 2017
STATUS
approved