login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244609
Least prime divisor of 659*2^n-1.
1
2, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 977, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 31, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 73, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 13477, 3, 5, 3, 7, 3, 5, 3, 13, 3, 5, 3, 48430237, 3, 5, 3, 7, 3, 5, 3, 13
OFFSET
0,1
COMMENTS
a(n) = 3 if n is odd.
a(n) = 5 if n == 2 (mod 4).
From Bruno Berselli, Jul 02 2014: (Start)
a(n) = 7 if n == 0 (mod 12) for n>0.
a(n) = 13 if n == 4 (mod 12).
a(n) == 3 or 7 (mod 12) for n>1. (End)
A040081(659) = 800516, so 800516 is the first n for which a(n) = 659*2^n-1 (found by David W Linton in 2004). - Jens Kruse Andersen, Jul 02 2014
LINKS
The Prime Pages, 659*2^800516-1
EXAMPLE
For n=4, 659*2^4-1 = 10543 = 13 * 811 so a(4) = 13.
MAPLE
f:= proc(m) local F;
F:= map(t -> t[1], ifactors(659*2^m-1, easy)[2]);
F:= select(type, F, integer);
if nops(F) = 0 then
F:= map(t -> t[1], ifactors(659*2^m-1)[2]);
min(F);
else min(F)
fi
end proc;
seq(f(n), n= 0 .. 100);
PROG
(Magma) [PrimeDivisors(659*2^n-1)[1]: n in [0..100]]; // Bruno Berselli, Jul 02 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 01 2014
STATUS
approved