login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244610
G.f. satisfies: A(x) = Sum_{n>=0} (1 + A(x)^n)^n * x^n / (1-x)^(n+1).
6
1, 3, 12, 69, 531, 4902, 50829, 572205, 6862689, 86688894, 1144856748, 15729634734, 224087784921, 3302687639634, 50281130534937, 789933587289762, 12797723149002135, 213714114688378335, 3677422015083776007, 65182431142298139342, 1189739115108589181733, 22353074429721448236369
OFFSET
0,2
LINKS
FORMULA
G.f. satisfies:
(1) A(x) = Sum_{n>=0} A(x)^(n^2) * x^n / (1-x - x*A(x)^n)^(n+1).
(2) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (1 + A(x)^k)^k. - Paul D. Hanna, Jan 19 2015
EXAMPLE
G.f.: A(x) = 1 + 3*x + 12*x^2 + 69*x^3 + 531*x^4 + 4902*x^5 + 50829*x^6 +...
where we have the identities:
(0) A(x) = 1/(1-x) + (1+A(x))*x/(1-x)^2 + (1+A(x)^2)^2*x^2/(1-x)^3 + (1+A(x)^3)^3*x^3/(1-x)^4 + (1+A(x)^4)^4*x^4/(1-x)^5 + (1+A(x)^5)^5*x^5/(1-x)^6 +...
(1) A(x) = 1/(1-2*x) + A(x)*x/(1-x-x*A(x))^2 + A(x)^4*x^2/(1-x-x*A(x)^2)^3 + A(x)^9*x^3/(1-x-x*A(x)^3)^4 + A(x)^16*x^4/(1-x-x*A(x)^4)^5 + A(x)^25*x^5/(1-x-x*A(x)^5)^6 +...
(2) A(x) = 1 + x*(1 + (1+A(x))) + x^2*(1 + 2*(1+A(x)) + (1+A(x)^2)^2) + x^3*(1 + 3*(1+A(x)) + 3*(1+A(x)^2)^2 + (1+A(x)^3)^3) + x^4*(1 + 4*(1+A(x)) + 6*(1+A(x)^2)^2 + 4*(1+A(x)^3)^3 + (1+A(x)^4)^4) + x^5*(1 + 5*(1+A(x)) + 10*(1+A(x)^2)^2 + 10*(1+A(x)^3)^3 + 5*(1+A(x)^4)^4 + (1+A(x)^5)^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (1 + A^m)^m * x^m / (1-x +x*O(x^n) )^(m+1) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, A^(m^2) * x^m / (1-x - x*A^m +x*O(x^n) )^(m+1) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, m, binomial(m, k) * (1 + A^k)^k +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 01 2014
STATUS
approved