login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251178 G.f. satisfies: A(x) = Sum_{n>=0} (A(x)^n + 1)^n * x^n / (1+x)^(n+1). 6
1, 1, 2, 9, 45, 260, 1631, 10901, 76489, 558396, 4215058, 32758362, 261329689, 2135425660, 17847456953, 152421972422, 1329377420317, 11837472015705, 107612097309239, 998877348931934, 9469405684352153, 91713801856207441, 907821847607245454, 9186799075352185868, 95069881782485132500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..128

FORMULA

G.f. satisfies:

(1) A(x) = Sum_{n>=0} A(x)^(n^2) * x^n / (1+x - x*A(x)^n)^(n+1).

(2) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (-1)^(n-k) * (A(x)^k + 1)^k.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 45*x^4 + 260*x^5 + 1631*x^6 +...

where we have the identities:

(0) A(x) = 1/(1+x) + (A(x)+1)*x/(1+x)^2 + (A(x)^2+1)^2*x^2/(1+x)^3 + (A(x)^3+1)^3*x^3/(1+x)^4 + (A(x)^4+1)^4*x^4/(1+x)^5 + (A(x)^5+1)^5*x^5/(1+x)^6 +...

(1) A(x) = 1 + A(x)*x/(1+x - x*A(x))^2 + A(x)^4*x^2/(1+x - x*A(x)^2)^3 + A(x)^9*x^3/(1+x - x*A(x)^3)^4 + A(x)^16*x^4/(1+x - x*A(x)^4)^5 + A(x)^25*x^5/(1+x - x*A(x)^5)^6  + A(x)^36*x^6/(1+x - x*A(x)^6)^7 +...

(2) A(x) = 1 - x*(1 - (A(x)+1)) + x^2*(1 - 2*(A(x)+1) + (A(x)^2+1)^2) - x^3*(1 - 3*(A(x)+1) + 3*(A(x)^2+1)^2 - (A(x)^3+1)^3) + x^4*(1 - 4*(A(x)+1) + 6*(A(x)^2+1)^2 - 4*(A(x)^3+1)^3 + (A(x)^4+1)^4) - x^5*(1 - 5*(A(x)+1) + 10*(A(x)^2+1)^2 - 10*(A(x)^3+1)^3 + 5*(A(x)^4+1)^4 - (A(x)^5+1)^5) +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (A^m + 1)^m * x^m / (1+x +x*O(x^n) )^(m+1) )); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, A^(m^2) * x^m / (1+x - x*A^m +x*O(x^n) )^(m+1) )); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, m, binomial(m, k) * (-1)^(m-k) * (A^k + 1)^k +x*O(x^n)))); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A251177, A251179, A251180, A251181, A244610.

Sequence in context: A233505 A228767 A074607 * A162725 A268171 A168431

Adjacent sequences:  A251175 A251176 A251177 * A251179 A251180 A251181

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 21:32 EDT 2021. Contains 347605 sequences. (Running on oeis4.)