login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033114 Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 8
1, 4, 17, 68, 273, 1092, 4369, 17476, 69905, 279620, 1118481, 4473924, 17895697, 71582788, 286331153, 1145324612, 4581298449, 18325193796, 73300775185, 293203100740, 1172812402961, 4691249611844, 18764998447377, 75059993789508 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Thomas Baruchel, Properties of the cumulated deficient binary digit sum, arXiv:1908.02250 [math.NT], 2019.

Index entries for linear recurrences with constant coefficients, signature (4,1,-4).

FORMULA

a(n) = floor(4^(n+1)/15) = 4^(n+1)/15 - 1/6 - (-1)^n/10. - Benoit Cloitre, Apr 18 2003

G.f.: 1/((1-x)*(1+x)*(1-4*x)); a(n) = 3*a(n-1) + 4*a(n-2)+1. Partial sum of A015521. - Paul Barry, Nov 12 2003

a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*4^j. - Paul Barry, Nov 12 2003

Convolution of A000302 and A059841 (4^n and periodic{1, 0}). a(n) = Sum_{k=0..n} (1 + (-1)^(n-k))*4^k/2. - Paul Barry, Jul 19 2004

a(n) = Sum_{k=0..n} (-1)^(n-k)*(J(2*k+1)-1)/2, J(n)=A001045(n). - Paul Barry, Mar 06 2008

a(n) = round((8*4^n-5)/30) = ceiling((4*4^n-4)/15) = round((4*4^n-4)/15); a(n) = a(n-2) + 4^(n-1), n > 1. - Mircea Merca, Dec 28 2010

a(n) = A117616(n)/2. - J. M. Bergot, Apr 22 2015

a(n) = A043291(n)/3; a(n+1) = 4*a(n) + A000035(n). - Robert Israel, Apr 22 2015

a(n)+a(n+1) = A002450(n+1). - R. J. Mathar, Feb 27 2019

MAPLE

seq(floor((4^(n+1)-1)/15), n=1..25) # Mircea Merca, Dec 28 2010

MATHEMATICA

Join[{a=1, b=4}, Table[c=3*b+4*a+1; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)

PROG

(MAGMA) [Round((8*4^n-5)/30): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011

CROSSREFS

Cf. A015521, A043291, A117616.

Sequence in context: A081113 A114587 A268431 * A096881 A033122 A005511

Adjacent sequences:  A033111 A033112 A033113 * A033115 A033116 A033117

KEYWORD

nonn,base,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 14:37 EST 2019. Contains 329999 sequences. (Running on oeis4.)