login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096881
Expansion of g.f. (1 + 4*x)/(1 - 17*x^2).
2
1, 4, 17, 68, 289, 1156, 4913, 19652, 83521, 334084, 1419857, 5679428, 24137569, 96550276, 410338673, 1641354692, 6975757441, 27903029764, 118587876497, 474351505988, 2015993900449, 8063975601796, 34271896307633, 137087585230532, 582622237229761, 2330488948919044
OFFSET
0,2
FORMULA
a(n) = 3*a(n-1) + 4*a(n-2) + 17^floor((n-2)/2).
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*4^(n-2*k).
a(n) = 17*a(n-2), n>1. - Harvey P. Dale, Jan 21 2012
E.g.f.: cosh(sqrt(17)*x) + 4*sinh(sqrt(17)*x)/sqrt(17). - Stefano Spezia, Mar 31 2023
MATHEMATICA
CoefficientList[Series[(1+4x)/(1-17x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[ {0, 17}, {1, 4}, 30] (* Harvey P. Dale, Jan 21 2012 *)
PROG
(PARI) Vec((1+4*x)/(1-17*x^2) + O(x^40)) \\ Michel Marcus, Jan 26 2016
(Magma) I:=[1, 4, 17]; [n le 3 select I[n] else 17*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 14 2004
EXTENSIONS
More terms from Stefano Spezia, Mar 31 2023
STATUS
approved