login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026383
a(n) = 5*a(n-2), starting 1,2.
10
1, 2, 5, 10, 25, 50, 125, 250, 625, 1250, 3125, 6250, 15625, 31250, 78125, 156250, 390625, 781250, 1953125, 3906250, 9765625, 19531250, 48828125, 97656250, 244140625, 488281250, 1220703125, 2441406250, 6103515625, 12207031250
OFFSET
0,2
COMMENTS
a(n) = T(n,0) + T(n,1) + ... + T(n,n), where T is the array in A026374.
Number of lattice paths from (0,0) to the line x=n using steps U=(1,1), D=(1,-1) and, at levels ...,-4,-2,0,2,4,..., also H=(2,0). Example: a(2)=5 because we have the following paths from (0,0) to the line x=2: UU, UD, H, DU and DD. - Emeric Deutsch, Jan 25 2004
From Gary W. Adamson, Aug 02 2010: (Start)
Equals eigensequence of a triangle with 1's in even columns starting with k=0 and (1, 2, 2, 2, ...) in odd columns. Example: a(5) = 50 = (1, 2, 1, 2, 1, 1) dot (1, 1, 2, 5, 10, 25) = (1 + 2 + 2 + 10 + 10 + 25) where (1, 2, 1, 2, 1, 1) = row 5 of the generating triangle. (End)
Also related to mixed Ramsey theory (see Chung & Graham reference). - Benoit Cloitre, Oct 22 2016
LINKS
FORMULA
Also number of integer strings s(0), ...s(n) such that s(0) = 0, where, for 1 <= i <= n, s(i) is even if i is even and |s(i) - s(i-1)| <= 1.
From Emeric Deutsch, Jan 25 2004: (Start)
a(2n) = 5^n, a(2n+1) = 2*5^n.
G.f. = (1+2z)/(1-5z^2). (End)
From - Paul Barry, Apr 16 2004: (Start)
Second inverse binomial transform of Fibonacci(3n+3)/2.
a(n) = 5^(n/2)*((1/2 + 1/sqrt(5)) + (1/2 - 1/sqrt(5))*(-1)^n). (End)
From Paul Barry, Jul 14 2004: (Start)
a(n) = a(n-1) + 2*a(n-2) + 5^floor((n-2)/2);
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*2^(n-2k). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: 2*sinh(sqrt(5)*x)/sqrt(5) + cosh(sqrt(5)*x). - Ilya Gutkovskiy, Oct 24 2016
MATHEMATICA
Riffle @@ Transpose@ NestList[5 # &, #, 15] &@ {1, 2} (* or *)
CoefficientList[Series[(1 + 2 x)/(1 - 5 x^2), {x, 0, 31}], x] (* Michael De Vlieger, Oct 23 2016 *)
PROG
(PARI) a(n)=(1+n%2)*5^(n\2) \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Cf. A026374.
Sequence in context: A018262 A336542 A018356 * A162963 A297860 A002094
KEYWORD
nonn,easy
EXTENSIONS
Better name from Ralf Stephan, Jul 17 2013
STATUS
approved