login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002094
Number of unlabeled connected loop-less graphs on n nodes containing exactly one cycle (of length at least 2) and with all nodes of degree <= 4.
(Formerly M1383 N0541)
7
0, 1, 2, 5, 10, 25, 56, 139, 338, 852, 2145, 5513, 14196, 36962, 96641, 254279, 671640, 1781840, 4742295, 12662282, 33898923, 90981264, 244720490, 659591378, 1781048728, 4817420360, 13050525328, 35405239155, 96180222540, 261603173201, 712364210543
OFFSET
1,3
COMMENTS
A pair of parallel edges is permitted and is regarded as a cycle of length 2.
The original definition in A Handbook of Integer Sequences (1973) based on Schiff (1875) was simply "Alcohols". - N. J. A. Sloane, Mar 22 2018
Schiff used an now outdated terminology and did not use the term "alcohols", but in German "zweiwerthige Kohlenwasserstoffe C_{n}H_{2n} ..." and later "... deren je zwei verfuegbare Affinitaeten ... durch Alkoholradikale befriedigt sind.", translated "bivalent hydrocarbons ... whose free valences ... are covered by alcohol radicals". At that time the meaning of "alcohol radical" was different from modern terminology, now meaning an -OH group, but in Schiff's terminology another C_{x}H{y} hydrocarbon group was meant. The organic compounds that are described by the graphs of this sequence in modern chemical terminology are the acyclic alkenes, with exactly one double carbon-to-carbon bond, and the monocyclic cycloalkanes (see Wikipedia links). - Hugo Pfoertner, Mar 29 2018
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875.
Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875. [Annotated scanned copy]
Wikipedia, Alkene. Those with exactly one double carbon-to-carbon bond are covered by this sequence, the simplest being ethylene C_{2}H_{4}.
Wikipedia, Cycloalkane. The simplest alicyclic compounds, which are the monocyclic saturated hydrocarbons with formula C_{n}H_{2n}, are covered by this sequence, the first example being cyclopropane C_{3}H_{6}.
FORMULA
Let A(x) denote the generating function for A000598 (Number of rooted ternary trees with n nodes), i.e., A(x) = 1+(1/6)*x*(A(x)^3+3*A(x)*A(x^2)+2*A(x^3)), and set B(x)=(A(x)^2+A(x^2))/2. With D_k(x) being the cycle polynomial of the regular k-gon for k>=2, the final generating function is then given by Sum_{k>=2} x^k*D_k(B(x)), which can be evaluated very quickly. - Sascha Kurz, Mar 18 2018
MAPLE
# cycle index of cyclic group C_n
cycC_n := proc(n::integer, a)
local d ;
add(numtheory[phi](d)*a[d]^(n/d), d=numtheory[divisors](n)) ;
%/n ;
end proc:
# cycle index of dihedral group
cyD_n := proc(n::integer, a)
cycC_n(n, a)/2 ;
if type(n, 'odd') then
%+ a[1]*a[2]^((n-1)/2)/2 ;
else
%+ ( a[1]^2*a[2]^((n-2)/2) +a[2]^(n/2) )/4 ;
end if;
end proc:
a000642 := [
1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925,
251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977,
550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259,
197818389539, 530775701520, 1426284383289] ;
g := [add(a000642[i]*x^i, i=1..nops(a000642)) ];
for i from 2 to nops(a000642) do
g := [op(g), subs(x=x^i, g[1]) ] ;
end do:
Nmax := nops(a000642) :
G := 0 ;
for c from 2 to Nmax do
f := cyD_n(c, g) ;
G := G+ taylor(f, x=0, Nmax) ;
end do:
taylor(G, x=0, Nmax) ;
gfun[seriestolist](%) ; # R. J. Mathar, Mar 17 2018
MATHEMATICA
terms = 31;
cycC[n_, a_] := Sum[EulerPhi[d] a[[d]]^(n/d), {d, Divisors[n]}]/n;
cyD[n_, a_] := Module[{cc}, cc = (1/2)cycC[n, a]; If[OddQ[n], (1/2)a[[1]]* a[[2]]^((n-1)/2)+cc, (1/4)(a[[1]]^2 a[[2]]^((n-2)/2) + a[[2]]^(n/2)) + cc]];
B[_] = 0; Do[B[x_] = Normal[(1/6) x (2 B[x^3] + 3 B[x^2] B[x] + B[x]^3) + O[x]^terms+1], terms];
A[x_] = (1/2) x (B[x^2] + B[x]^2) + O[x]^(terms+2);
a000642 = Rest[CoefficientList[A[x], x]];
g = {Sum[x^i a000642[[i]], {i, 1, terms+1}]};
For[i = 2, i <= Length[a000642], i++, g = Flatten[Append[g, g[[1]] /. x -> x^i]]];
For[G = 0; c = 2, c < terms+1, c++, f = cyD[c, g]; G = Series[f, {x, 0, terms+1}] + G];
Most[Rest[CoefficientList[G, x]]] (* Jean-François Alcover, Mar 26 2020, after R. J. Mathar *)
CROSSREFS
Cf. A000294, A000598, A000602, A000625, A000642, A001429 (unbound degrees), A068051.
Sequence in context: A026383 A162963 A297860 * A212709 A264867 A354832
KEYWORD
nonn
EXTENSIONS
Better definition from R. J. Mathar; terms beyond 852 from R. J. Mathar and Sean A. Irvine, Mar 17 2018
STATUS
approved