login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096882
Expansion of g.f. (1 + 7*x)/(1 - 50*x^2).
1
1, 7, 50, 350, 2500, 17500, 125000, 875000, 6250000, 43750000, 312500000, 2187500000, 15625000000, 109375000000, 781250000000, 5468750000000, 39062500000000, 273437500000000, 1953125000000000, 13671875000000000, 97656250000000000, 683593750000000000, 4882812500000000000
OFFSET
0,2
FORMULA
a(n) = 6*a(n-1) + 7*a(n-2) + 50^floor((n-2)/2).
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*7^(n-2*k).
E.g.f.: cosh(5*sqrt(2)*x) + 7*sinh(5*sqrt(2)*x)/(5*sqrt(2)). - Stefano Spezia, Mar 31 2023
MATHEMATICA
a[n_]:=Sum[Binomial[Floor[n/2], k]7^(n-2k), {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Stefano Spezia, Mar 31 2023 *)
LinearRecurrence[{0, 50}, {1, 7}, 30] (* Harvey P. Dale, Sep 20 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 14 2004
EXTENSIONS
More terms from Stefano Spezia, Mar 31 2023
STATUS
approved