Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 20 2024 13:10:50
%S 1,7,50,350,2500,17500,125000,875000,6250000,43750000,312500000,
%T 2187500000,15625000000,109375000000,781250000000,5468750000000,
%U 39062500000000,273437500000000,1953125000000000,13671875000000000,97656250000000000,683593750000000000,4882812500000000000
%N Expansion of g.f. (1 + 7*x)/(1 - 50*x^2).
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,50).
%F a(n) = 6*a(n-1) + 7*a(n-2) + 50^floor((n-2)/2).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*7^(n-2*k).
%F E.g.f.: cosh(5*sqrt(2)*x) + 7*sinh(5*sqrt(2)*x)/(5*sqrt(2)). - _Stefano Spezia_, Mar 31 2023
%t a[n_]:=Sum[Binomial[Floor[n/2],k]7^(n-2k),{k,0,Floor[n/2]}]; Array[a,25,0] (* _Stefano Spezia_, Mar 31 2023 *)
%t LinearRecurrence[{0,50},{1,7},30] (* _Harvey P. Dale_, Sep 20 2024 *)
%Y Cf. A004663, A026383, A016116, A096881.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jul 14 2004
%E More terms from _Stefano Spezia_, Mar 31 2023