The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033117 Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 5
 1, 7, 50, 350, 2451, 17157, 120100, 840700, 5884901, 41194307, 288360150, 2018521050, 14129647351, 98907531457, 692352720200, 4846469041400, 33925283289801, 237476983028607, 1662338881200250, 11636372168401750, 81454605178812251, 570182236251685757, 3991275653761800300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of round(7^n/8), A015552. - Mircea Merca, Dec 28 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (7,1,-7). FORMULA G.f.: x / ((1-x)*(1-7*x)*(1+x)). a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3). a(n) = (7*7^n - 4 - 3*(-1)^n)/48. - Bruno Berselli, Jan 19 2011 a(n) = (1/6)*floor(7^(n+1)/8) = floor((7*7^n-1)/48) = ceiling((7*7^n-7)/48) = round((7*7^n-7)/48) = round((7*7^n-4)/48); a(n) = a(n-2) + 7^(n-1), n > 2. - Mircea Merca, Dec 28 2010 MAPLE A033117 := proc(n) add( round(7^i/8), i=0..n) ; end proc: MATHEMATICA Join[{a=1, b=7}, Table[c=6*b+7*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *) Module[{nn=30, c}, c=PadRight[{}, nn, {1, 0}]; Table[FromDigits[Take[c, n], 7], {n, nn}]] (* or *) LinearRecurrence[{7, 1, -7}, {1, 7, 50}, 30] (* Harvey P. Dale, Feb 13 2014 *) CoefficientList[Series[1/((1 - x) (1 - 7 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *) PROG (MAGMA) [Floor((7*7^n-1)/48): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011 (MAGMA) I:=[1, 7, 50]; [n le 3 select I[n] else 7*Self(n-1)+Self(n-2)-7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 26 2014 CROSSREFS Cf. A015552. Sequence in context: A278875 A266360 A288787 * A096882 A033125 A022037 Adjacent sequences:  A033114 A033115 A033116 * A033118 A033119 A033120 KEYWORD nonn,base,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 23:03 EDT 2021. Contains 343071 sequences. (Running on oeis4.)