login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033117
Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
5
1, 7, 50, 350, 2451, 17157, 120100, 840700, 5884901, 41194307, 288360150, 2018521050, 14129647351, 98907531457, 692352720200, 4846469041400, 33925283289801, 237476983028607, 1662338881200250, 11636372168401750, 81454605178812251, 570182236251685757, 3991275653761800300
OFFSET
1,2
COMMENTS
Partial sums of round(7^n/8), A015552. - Mircea Merca, Dec 28 2010
FORMULA
G.f.: x / ((1-x)*(1-7*x)*(1+x)).
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3).
a(n) = (7*7^n - 4 - 3*(-1)^n)/48. - Bruno Berselli, Jan 19 2011
a(n) = (1/6)*floor(7^(n+1)/8) = floor((7*7^n-1)/48) = ceiling((7*7^n-7)/48) = round((7*7^n-7)/48) = round((7*7^n-4)/48); a(n) = a(n-2) + 7^(n-1), n > 2. - Mircea Merca, Dec 28 2010
MAPLE
A033117 := proc(n) add( round(7^i/8), i=0..n) ; end proc:
MATHEMATICA
Join[{a=1, b=7}, Table[c=6*b+7*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
Module[{nn=30, c}, c=PadRight[{}, nn, {1, 0}]; Table[FromDigits[Take[c, n], 7], {n, nn}]] (* or *) LinearRecurrence[{7, 1, -7}, {1, 7, 50}, 30] (* Harvey P. Dale, Feb 13 2014 *)
CoefficientList[Series[1/((1 - x) (1 - 7 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
PROG
(Magma) [Floor((7*7^n-1)/48): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
(Magma) I:=[1, 7, 50]; [n le 3 select I[n] else 7*Self(n-1)+Self(n-2)-7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 26 2014
CROSSREFS
Cf. A015552.
Sequence in context: A278875 A266360 A288787 * A096882 A033125 A022037
KEYWORD
nonn,base,easy
STATUS
approved