OFFSET
1,2
COMMENTS
Partial sums of round(7^n/8), A015552. - Mircea Merca, Dec 28 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (7,1,-7).
FORMULA
G.f.: x / ((1-x)*(1-7*x)*(1+x)).
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3).
a(n) = (7*7^n - 4 - 3*(-1)^n)/48. - Bruno Berselli, Jan 19 2011
a(n) = (1/6)*floor(7^(n+1)/8) = floor((7*7^n-1)/48) = ceiling((7*7^n-7)/48) = round((7*7^n-7)/48) = round((7*7^n-4)/48); a(n) = a(n-2) + 7^(n-1), n > 2. - Mircea Merca, Dec 28 2010
MAPLE
A033117 := proc(n) add( round(7^i/8), i=0..n) ; end proc:
MATHEMATICA
Join[{a=1, b=7}, Table[c=6*b+7*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
Module[{nn=30, c}, c=PadRight[{}, nn, {1, 0}]; Table[FromDigits[Take[c, n], 7], {n, nn}]] (* or *) LinearRecurrence[{7, 1, -7}, {1, 7, 50}, 30] (* Harvey P. Dale, Feb 13 2014 *)
CoefficientList[Series[1/((1 - x) (1 - 7 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
PROG
(Magma) [Floor((7*7^n-1)/48): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
(Magma) I:=[1, 7, 50]; [n le 3 select I[n] else 7*Self(n-1)+Self(n-2)-7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 26 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved