

A117616


a(0)=0, a(n)=4a(n1)+2 for n odd, a(n)=4a(n1) for n even.


2



0, 2, 8, 34, 136, 546, 2184, 8738, 34952, 139810, 559240, 2236962, 8947848, 35791394, 143165576, 572662306, 2290649224, 9162596898, 36650387592, 146601550370, 586406201480, 2345624805922, 9382499223688, 37529996894754
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


REFERENCES

L. Rosenfeld, Nuclear Forces, section II, Interscience, New York, 1948, p 202


LINKS

Table of n, a(n) for n=0..23.
Index entries for linear recurrences with constant coefficients, signature (4,1,4).


FORMULA

a(n) = (53*(1)^n+2^(3+2*n))/15. a(n) = 4*a(n1)+a(n2)4*a(n3). G.f.: 2*x / ((x1)*(x+1)*(4*x1)). [Colin Barker, Feb 17 2013]
a(n) = 2*A033114(n).  R. J. Mathar, Feb 27 2019


MAPLE

a:=proc(n) if n=0 then 0 elif n mod 2 = 1 then 4*a(n1)+2 else 4*a(n1) fi end: seq(a(n), n=0..23);


MATHEMATICA

b[0] := 0 b[1] := 2 b[n_?EvenQ] := b[n] = 4*b[n  1] b[n_?OddQ] := b[n] = 4*b[n  1] + 2 a = Table[b[n], {n, 0, 25}]


CROSSREFS

Sequence in context: A226495 A111643 A000163 * A228655 A192402 A014445
Adjacent sequences: A117613 A117614 A117615 * A117617 A117618 A117619


KEYWORD

nonn,easy


AUTHOR

Roger L. Bagula, Apr 07 2006


EXTENSIONS

Edited by N. J. A. Sloane, Apr 16 2006


STATUS

approved



