login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117616 a(0)=0, a(n)=4a(n-1)+2 for n odd, a(n)=4a(n-1) for n even. 2
0, 2, 8, 34, 136, 546, 2184, 8738, 34952, 139810, 559240, 2236962, 8947848, 35791394, 143165576, 572662306, 2290649224, 9162596898, 36650387592, 146601550370, 586406201480, 2345624805922, 9382499223688, 37529996894754 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

L. Rosenfeld, Nuclear Forces, section II, Interscience, New York, 1948, p 202

LINKS

Table of n, a(n) for n=0..23.

Index entries for linear recurrences with constant coefficients, signature (4,1,-4).

FORMULA

a(n) = (-5-3*(-1)^n+2^(3+2*n))/15. a(n) = 4*a(n-1)+a(n-2)-4*a(n-3). G.f.: 2*x / ((x-1)*(x+1)*(4*x-1)). [Colin Barker, Feb 17 2013]

a(n) = 2*A033114(n). - R. J. Mathar, Feb 27 2019

MAPLE

a:=proc(n) if n=0 then 0 elif n mod 2 = 1 then 4*a(n-1)+2 else 4*a(n-1) fi end: seq(a(n), n=0..23);

MATHEMATICA

b[0] := 0 b[1] := 2 b[n_?EvenQ] := b[n] = 4*b[n - 1] b[n_?OddQ] := b[n] = 4*b[n - 1] + 2 a = Table[b[n], {n, 0, 25}]

CROSSREFS

Sequence in context: A226495 A111643 A000163 * A228655 A192402 A014445

Adjacent sequences:  A117613 A117614 A117615 * A117617 A117618 A117619

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Apr 07 2006

EXTENSIONS

Edited by N. J. A. Sloane, Apr 16 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)