login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117615
a(0)=0, a(1)=1, a(n)=4a(n-1)+2 for n =3,5,7,..., a(n)=4a(n-1) for n =2,4,6,....
0
0, 1, 4, 18, 72, 290, 1160, 4642, 18568, 74274, 297096, 1188386, 4753544, 19014178, 76056712, 304226850, 1216907400, 4867629602, 19470518408, 77882073634, 311528294536, 1246113178146, 4984452712584, 19937810850338, 79751243401352
OFFSET
0,3
REFERENCES
L. Rosenfeld, Nuclear Forces, section II, Interscience, New York, 1948, p 202
FORMULA
G.f.: x*(1+x^2) / ( (x-1)*(4*x-1)*(1+x) ). - R. J. Mathar, Nov 07 2015
a(n) = 3*a(n-1)+4*a(n-2)+2,n>=3. - R. J. Mathar, Nov 07 2015
MAPLE
a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 1 then 4*a(n-1)+2 else 4*a(n-1) fi end: seq(a(n), n=0..24);
MATHEMATICA
b[0] := 0 b[1] := 1 b[n_?EvenQ] := b[n] = 4*b[n - 1] b[n_?OddQ] := b[n] = 4*b[n - 1] + 2 a = Table[b[n], {n, 0, 25}]
nxt[{n_, a_}]:={n+1, If[EvenQ[n], 4a+2, 4a]}; Join[{0}, Transpose[NestList[nxt, {1, 1}, 30]][[2]]] (* or *) Join[{0}, LinearRecurrence[{4, 1, -4}, {1, 4, 18}, 30]] (* Harvey P. Dale, Nov 28 2013 *)
CROSSREFS
Sequence in context: A290919 A218892 A307566 * A267450 A199524 A083693
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 07 2006
EXTENSIONS
Edited by N. J. A. Sloane, Apr 16 2006
STATUS
approved