login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269800 Convolution of A000107 and A027852. 3
0, 0, 1, 3, 10, 30, 91, 268, 790, 2308, 6737, 19609, 57044, 165796, 481823, 1400028, 4068577, 11825459, 34380152, 99981942, 290854486, 846397344, 2463892294, 7174933683, 20900764811, 60904875999, 177535250815, 517673673674, 1509950058629, 4405547856394, 12857716906991 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This counts the arrangements of n nested circles in the plane where one pair of circles touches. a(2)=1 because the (only) pair must touch. a(3)=3 because either the third circle circumscribes the touching pair or is inside one of the touching circles or is entirely separated from the touching pair.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..500

R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 [math.CO](2016), row sums Table 8.

MATHEMATICA

b[0] = 0; b[1] = 1; b[n_] := b[n] =Sum[Sum[d b[d], {d, Divisors[j]}] b[n - j], {j, 1, n - 1}]/(n - 1);

a7[n_] := a7[n] = b[n] + Sum[ a7[n - i] b[i], {i, 1, n - 1}];

c[n_] := c[n] = If[n <= 1, n, (Sum[Sum[d c[d], {d, Divisors[j]}] c[n - j], {j, 1, n - 1}])/(n - 1)];

a52[n_] := (Sum[c[i] c[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, c[n/2], 0])/2;

a[n_] := Sum[a7[k] a52[n - k + 1], {k, 0, n + 1}];

Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 16 2018, after Alois P. Heinz in A000107 and A027852 *)

CROSSREFS

Cf. A000107, A027852.

Sequence in context: A026327 A014531 A062107 * A033113 A360714 A290718

Adjacent sequences: A269797 A269798 A269799 * A269801 A269802 A269803

KEYWORD

nonn

AUTHOR

R. J. Mathar, Mar 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 11:03 EDT 2023. Contains 361375 sequences. (Running on oeis4.)