login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of floor(3^n/4).
1

%I #44 Sep 08 2022 08:45:53

%S 0,2,8,28,88,270,816,2456,7376,22138,66424,199284,597864,1793606,

%T 5380832,16142512,48427552,145282674,435848040,1307544140,3922632440,

%U 11767897342,35303692048,105911076168,317733228528

%N Partial sums of floor(3^n/4).

%C Partial sums of A081251(n-1).

%H Vincenzo Librandi, <a href="/A178222/b178222.txt">Table of n, a(n) for n = 1..1000</a>

%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-4,3).

%F a(n) = round((3*3^n - 4*n - 4)/8).

%F a(n) = floor((3*3^n - 4*n - 3)/8).

%F a(n) = ceiling((3*3^n - 4*n - 5)/8).

%F a(n) = round((3*3^n - 4*n - 3)/8).

%F a(n) = a(n-2) + 3^(n-1) - 1, n > 2.

%F From _Bruno Berselli_, Jan 14 2011: (Start)

%F a(n) = (3*3^n - 4*n - 4 + (-1)^n)/8.

%F G.f.: 2*x^2/((1+x)*(1-3*x)*(1-x)^2). (End)

%e a(3) = 0 + 2 + 6 = 8.

%p seq (round ((3*3^n-4*n-3)/8), n=1..25);

%t Accumulate[Floor[3^Range[30]/4]] (* _Harvey P. Dale_, Nov 04 2011 *)

%t CoefficientList[Series[2 x/((1 + x) (1 - 3 x) (1 - x)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 26 2014 *)

%o (Magma) [Floor((3*3^n-4*n-3)/8): n in [1..30]]; // _Vincenzo Librandi_, Jun 23 2011

%Y Cf. A081251.

%K nonn,easy

%O 1,2

%A _Mircea Merca_, Dec 26 2010