|
|
A106734
|
|
a(n) = n^3 - 7*n + 7.
|
|
4
|
|
|
1, 1, 13, 43, 97, 181, 301, 463, 673, 937, 1261, 1651, 2113, 2653, 3277, 3991, 4801, 5713, 6733, 7867, 9121, 10501, 12013, 13663, 15457, 17401, 19501, 21763, 24193, 26797, 29581, 32551, 35713, 39073, 42637, 46411, 50401, 54613, 59053, 63727
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
n*a(n) + n*(n-1)*7 = n^4.
G.f.: (1 - 3*x + 15*x^2 - 7*x^3)/(1-x)^4. - Harvey P. Dale, Feb 18 2018
E.g.f.: (7 - 6*x + 3*x^2 + x^3)*exp(x) - 7. - G. C. Greubel, Sep 11 2021
|
|
EXAMPLE
|
a(2) = 1, 1 + 15 = 2^4;
a(3) = 13, 13 + 27 + 41 = 3^4;
a(4) = 43, 43 + 57 + 71 + 85 = 4^4.
|
|
MATHEMATICA
|
Table[n^3-7n+7, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 1, 13, 43}, 40] (* Harvey P. Dale, Feb 18 2018 *)
|
|
PROG
|
(Sage) [n*(n^2 -7) +7 for n in (0..40)] # G. C. Greubel, Sep 11 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Andras Erszegi (erszegi.andras(AT)chello.hu), May 14 2005
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|