login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292605
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).
3
1, 1, 0, 19, 1, 0, 1513, 166, 1, 0, 315523, 52715, 1361, 1, 0, 136085041, 30543236, 1528806, 10916, 1, 0, 105261234643, 29664031413, 2257312622, 42421946, 87375, 1, 0, 132705221399353, 45011574747714, 4637635381695, 153778143100, 1156669095, 699042, 1, 0
OFFSET
0,4
COMMENTS
See the comments in A292604.
FORMULA
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) for n>0 and F_{3; 0}(x) = 1.
EXAMPLE
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 19, 1, 0]
[3][ 1513, 166, 1, 0]
[4][ 315523, 52715, 1361, 1, 0]
[5][ 136085041, 30543236, 1528806, 10916, 1, 0]
MAPLE
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292605_row := proc(n) if n = 0 then return [1] fi;
add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292605_row(n) od;
PROG
(Sage) # uses[A278073_row from A278073]
def A292605_row(n):
if n == 0: return [1]
L = A278073_row(n)
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292605_row(n))
CROSSREFS
F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} is this triangle, F_{4} = A292606.
First column: A002115. Row sums: A014606. Alternating row sums: A292609.
Sequence in context: A366110 A317447 A202582 * A338873 A040365 A040366
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 20 2017
STATUS
approved