OFFSET
0,5
COMMENTS
FORMULA
G.f. A(x) satisfies: x/Series_Reversion(x*A(x)) = G(x) - x, so that G(x*A(x)) = (1+x)*A(x) and A(x/(G(x) - x)) = G(x) - x, where G(x) is the g.f. of A144692.
EXAMPLE
G.f.: A(x) = 1 + x^2 + 19*x^4 + 515*x^6 + 74383*x^8 + 6816465*x^10 +...
where
x/Series_Reversion(x*A(x)) = 1 + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +...+ A144692(n)*x^n +...
The g.f. G(x) of A144692 begins:
G(x) = 1 + x + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +...
where G(x) satisfies: A(x) = G(x*A(x))/(1+x) and G(x) = A(x/(G(x)-x)) + x.
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 21 2011
STATUS
approved