The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202582 Inverse binomial transform of A144691. 2
 1, 0, 1, 0, 19, 0, 515, 0, 74383, 0, 6816465, 0, 1457117673, 0, 241183200687, 0, 188350353304919, 0, 60855583632497865, 0, 39858196864723826583, 0, 17024263169695049621551, 0, 20817292362271689177123509, 0, 13408255577123563666760376685, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A144691 is defined by: A144691(n) = limit of the coefficient of x^(2^m+n) in B(x)^(n+1)/(n+1) as m grows, where B(x) = Sum_{k>=0} x^(2^k). LINKS Table of n, a(n) for n=0..27. FORMULA G.f. A(x) satisfies: x/Series_Reversion(x*A(x)) = G(x) - x, so that G(x*A(x)) = (1+x)*A(x) and A(x/(G(x) - x)) = G(x) - x, where G(x) is the g.f. of A144692. EXAMPLE G.f.: A(x) = 1 + x^2 + 19*x^4 + 515*x^6 + 74383*x^8 + 6816465*x^10 +... where x/Series_Reversion(x*A(x)) = 1 + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +...+ A144692(n)*x^n +... The g.f. G(x) of A144692 begins: G(x) = 1 + x + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +... where G(x) satisfies: A(x) = G(x*A(x))/(1+x) and G(x) = A(x/(G(x)-x)) + x. CROSSREFS Cf. A144691, A144692, A144690. Sequence in context: A055967 A366110 A317447 * A292605 A338873 A040365 Adjacent sequences: A202579 A202580 A202581 * A202583 A202584 A202585 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 05:28 EDT 2024. Contains 375985 sequences. (Running on oeis4.)