|
|
A292606
|
|
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).
|
|
3
|
|
|
1, 1, 0, 69, 1, 0, 33661, 988, 1, 0, 60376809, 2669683, 16507, 1, 0, 288294050521, 17033188586, 212734266, 261626, 1, 0, 3019098162602349, 223257353561605, 4297382231090, 17634518610, 4196345, 1, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) for n>0 and F_{4; 0}(x) = 1.
|
|
EXAMPLE
|
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0] [ 1]
[1] [ 1, 0]
[2] [ 69, 1, 0]
[3] [ 33661, 988, 1, 0]
[4] [ 60376809, 2669683, 16507, 1, 0]
[5] [288294050521, 17033188586, 212734266, 261626, 1, 0]
|
|
MAPLE
|
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292606_row := proc(n) if n = 0 then return [1] fi;
add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292606_row(n) od;
|
|
PROG
|
if n == 0: return [1]
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292606_row(n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|