%I #25 Mar 24 2020 12:36:56
%S 1,1,0,69,1,0,33661,988,1,0,60376809,2669683,16507,1,0,288294050521,
%T 17033188586,212734266,261626,1,0,3019098162602349,223257353561605,
%U 4297382231090,17634518610,4196345,1,0
%N Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).
%C See the comments in A292604.
%F F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) for n>0 and F_{4; 0}(x) = 1.
%e Triangle starts:
%e [n\k][ 0 1 2 3 4 5]
%e --------------------------------------------------
%e [0] [ 1]
%e [1] [ 1, 0]
%e [2] [ 69, 1, 0]
%e [3] [ 33661, 988, 1, 0]
%e [4] [ 60376809, 2669683, 16507, 1, 0]
%e [5] [288294050521, 17033188586, 212734266, 261626, 1, 0]
%p Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
%p A292606_row := proc(n) if n = 0 then return [1] fi;
%p add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
%p for n from 0 to 6 do A292606_row(n) od;
%o (Sage) # uses[A278074_row from A278074]
%o def A292606_row(n):
%o if n == 0: return [1]
%o L = A278074_row(n)
%o S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
%o return expand(S).list() + [0]
%o for n in (0..5): print(A292606_row(n))
%Y F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} = A292605, F_{4} is this triangle.
%Y First column: A211212. Row sums: A014608. Alternating row sums: A292607.
%Y Cf. A181985.
%K nonn,tabl
%O 0,4
%A _Peter Luschny_, Sep 26 2017