login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).
3

%I #19 Mar 24 2020 13:24:22

%S 1,1,0,19,1,0,1513,166,1,0,315523,52715,1361,1,0,136085041,30543236,

%T 1528806,10916,1,0,105261234643,29664031413,2257312622,42421946,87375,

%U 1,0,132705221399353,45011574747714,4637635381695,153778143100,1156669095,699042,1,0

%N Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).

%C See the comments in A292604.

%F F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) for n>0 and F_{3; 0}(x) = 1.

%e Triangle starts:

%e [n\k][ 0 1 2 3 4 5]

%e --------------------------------------------------

%e [0][ 1]

%e [1][ 1, 0]

%e [2][ 19, 1, 0]

%e [3][ 1513, 166, 1, 0]

%e [4][ 315523, 52715, 1361, 1, 0]

%e [5][ 136085041, 30543236, 1528806, 10916, 1, 0]

%p Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x):

%p A292605_row := proc(n) if n = 0 then return [1] fi;

%p add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:

%p for n from 0 to 6 do A292605_row(n) od;

%o (Sage) # uses[A278073_row from A278073]

%o def A292605_row(n):

%o if n == 0: return [1]

%o L = A278073_row(n)

%o S = sum(L[k]*(x-1)^(n-k) for k in (0..n))

%o return expand(S).list() + [0]

%o for n in (0..5): print(A292605_row(n))

%Y F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} is this triangle, F_{4} = A292606.

%Y First column: A002115. Row sums: A014606. Alternating row sums: A292609.

%Y Cf. A181985, A278073.

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Sep 20 2017