login
A373164
Triangle read by rows: the exponential almost-Riordan array ( 1 | 2 - exp(x), x ).
0
1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, -1, -3, -3, 1, 0, -1, -4, -6, -4, 1, 0, -1, -5, -10, -10, -5, 1, 0, -1, -6, -15, -20, -15, -6, 1, 0, -1, -7, -21, -35, -35, -21, -7, 1, 0, -1, -8, -28, -56, -70, -56, -28, -8, 1, 0, -1, -9, -36, -84, -126, -126, -84, -36, -9, 1
OFFSET
0,9
LINKS
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 8.
FORMULA
T(n,0) = A000007(n); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] (2-exp(x))*x^(k-1).
EXAMPLE
The triangle begins:
1;
0, 1;
0, -1, 1;
0, -1, -2, 1;
0, -1, -3, -3, 1;
0, -1, -4, -6, -4, 1;
0, -1, -5, -10, -10, -5, 1;
0, -1, -6, -15, -20, -15, -6, 1;
0, -1, -7, -21, -35, -35, -21, -7, 1;
...
MATHEMATICA
T[n_, 0]:=KroneckerDelta[n, 0]; T[n_, k_]:=(n-1)!/(k-1)!SeriesCoefficient[(2-Exp[x])x^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000012 (right diagonal), A024000 (subdiagonal), A122958 (row sums), A153881 (k=1).
Triangle A154926 with 1st column A000007.
Sequence in context: A119337 A213889 A363779 * A110555 A097805 A071919
KEYWORD
sign,tabl
AUTHOR
Stefano Spezia, May 26 2024
STATUS
approved