OFFSET
0,9
LINKS
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 8.
FORMULA
T(n,0) = A000007(n); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] (2-exp(x))*x^(k-1).
EXAMPLE
The triangle begins:
1;
0, 1;
0, -1, 1;
0, -1, -2, 1;
0, -1, -3, -3, 1;
0, -1, -4, -6, -4, 1;
0, -1, -5, -10, -10, -5, 1;
0, -1, -6, -15, -20, -15, -6, 1;
0, -1, -7, -21, -35, -35, -21, -7, 1;
...
MATHEMATICA
T[n_, 0]:=KroneckerDelta[n, 0]; T[n_, k_]:=(n-1)!/(k-1)!SeriesCoefficient[(2-Exp[x])x^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Stefano Spezia, May 26 2024
STATUS
approved